Scilab Website | Contribute with GitLab | Mailing list archives | ATOMS toolboxes
Scilab Online Help
5.5.0 - Português

Change language to:
English - Français - 日本語 - Русский

Please note that the recommended version of Scilab is 2025.0.0. This page might be outdated.
See the recommended documentation of this function

Ajuda do Scilab >> Processamento de Sinais > filters > lindquist

lindquist

Lindquist's algorithm

Calling Sequence

[P,R,T]=lindquist(n,H,F,G,R0)

Arguments

n

number of iterations.

H, F, G

estimated triple from the covariance sequence of y.

R0

E(yk*yk')

P

solution of the Riccati equation after n iterations.

R, T

gain matrices of the filter.

Description

computes iteratively the minimal solution of the algebraic Riccati equation and gives the matrices R and T of the filter model, by the Lindquist's algorithm.

Example

//Generate signal
x=%pi/10:%pi/10:102.4*%pi;
y=[1; 1] * sin(x) + [sin(2*x); sin(1.9*x)] + rand(2,1024,"normal");

//Compute correlations
c=[];
for j=1:2
   for k=1:2
     c=[c;corr(y(k,:),y(j,:),64)];
   end
end
c=matrix(c,2,128);

//Find H,F,G with 6 states
hk=hank(20,20,c);
[H,F,G]=phc(hk,2,6);

//Solve Riccati equation
R0=c(1:2,1:2);
[P,R,T]=lindquist(100,H,F,G,R0);

See Also

  • srfaur — square-root algorithm
  • faurre — filter computation by simple Faurre algorithm
  • phc — Markovian representation
Report an issue
<< levin filters remez >>

Copyright (c) 2022-2024 (Dassault Systèmes)
Copyright (c) 2017-2022 (ESI Group)
Copyright (c) 2011-2017 (Scilab Enterprises)
Copyright (c) 1989-2012 (INRIA)
Copyright (c) 1989-2007 (ENPC)
with contributors
Last updated:
Fri Apr 11 14:18:12 CEST 2014