- Scilab help
- CACSD
- format_representation
- Plot and display
- plzr
- syslin
- abinv
- arhnk
- arl2
- arma
- arma2p
- arma2ss
- armac
- armax
- armax1
- arsimul
- augment
- balreal
- bilin
- bstap
- cainv
- calfrq
- canon
- ccontrg
- cls2dls
- colinout
- colregul
- cont_mat
- contr
- contrss
- copfac
- csim
- ctr_gram
- damp
- dcf
- ddp
- dhinf
- dhnorm
- dscr
- dsimul
- dt_ility
- dtsi
- equil
- equil1
- feedback
- findABCD
- findAC
- findBD
- findBDK
- findR
- findx0BD
- flts
- fourplan
- freq
- freson
- fspec
- fspecg
- fstabst
- g_margin
- gamitg
- gcare
- gfare
- gfrancis
- gtild
- h2norm
- h_cl
- h_inf
- h_inf_st
- h_norm
- hankelsv
- hinf
- imrep2ss
- inistate
- invsyslin
- kpure
- krac2
- lcf
- leqr
- lft
- lin
- linf
- linfn
- linmeq
- lqe
- lqg
- lqg2stan
- lqg_ltr
- lqr
- ltitr
- macglov
- minreal
- minss
- mucomp
- narsimul
- nehari
- noisegen
- nyquistfrequencybounds
- obs_gram
- obscont
- observer
- obsv_mat
- obsvss
- p_margin
- parrot
- pfss
- phasemag
- pol2des
- ppol
- prbs_a
- projsl
- reglin
- repfreq
- ric_desc
- ricc
- riccati
- routh_t
- rowinout
- rowregul
- rtitr
- sensi
- sident
- sorder
- specfact
- ssprint
- st_ility
- stabil
- sysfact
- syssize
- time_id
- trzeros
- ui_observer
- unobs
- zeropen
Please note that the recommended version of Scilab is 2025.0.0. This page might be outdated.
See the recommended documentation of this function
leqr
H-infinity LQ gain (full state)
Calling Sequence
[K,X,err]=leqr(P12,Vx)
Arguments
- P12
syslin
list- Vx
symmetric nonnegative matrix (should be small enough)
- K,X
two real matrices
- err
a real number (l1 norm of LHS of Riccati equation)
Description
leqr
computes the linear suboptimal H-infinity LQ full-state gain
for the plant P12=[A,B2,C1,D12]
in continuous or discrete time.
P12
is a syslin
list (e.g. P12=syslin('c',A,B2,C1,D12)
).
[C1' ] [Q S] [ ] * [C1 D12] = [ ] [D12'] [S' R]
Vx
is related to the variance matrix of the noise w
perturbing x
;
(usually Vx=gama^-2*B1*B1'
).
The gain K
is such that A + B2*K
is stable.
X
is the stabilizing solution of the Riccati equation.
For a continuous plant:
K=-inv(R)*(B2'*X+S)
For a discrete time plant:
with Abar=A-B2*inv(R)*S'
and Qbar=Q-S*inv(R)*S'
The 3-blocks matrix pencils associated with these Riccati equations are:
discrete continuous |I -Vx 0| | A 0 B2| |I 0 0| | A Vx B2| z|0 A' 0| - |-Q I -S| s|0 I 0| - |-Q -A' -S | |0 B2' 0| | S' 0 R| |0 0 0| | S' -B2' R|
See Also
- lqr — LQ compensator (full state)
Report an issue | ||
<< lcf | CACSD | lft >> |