Scilab Website | Contribute with GitLab | Mailing list archives | ATOMS toolboxes
Scilab Online Help
5.4.0 - English

Change language to:
Français - 日本語 - Português - Русский

Please note that the recommended version of Scilab is 2025.0.0. This page might be outdated.
See the recommended documentation of this function

Scilab help >> Elementary Functions > Matrix operations > norm

norm

matrix norm

Calling Sequence

[y]=norm(x [,flag])

Arguments

x

real or complex vector or matrix (full or sparse storage)

flag

string (type of norm) (default value =2)

y

norm

Description

For matrices

norm(x)

or norm(x,2) is the largest singular value of x (max(svd(x))).

norm(x,1)

The l_1 norm x (the largest column sum : max(sum(abs(x),'r')) ).

norm(x,'inf'),norm(x,%inf)

The infinity norm of x (the largest row sum : max(sum(abs(x),'c')) ).

norm(x,'fro')

Frobenius norm i.e. sqrt(sum(diag(x'*x))).

For vectors

norm(v,p)

The l_p norm (sum(v(i)^p))^(1/p) .

norm(v), norm(v,2)

The l_2 norm

norm(v,'inf')

max(abs(v(i))).

Examples

A=[1,2,3];
norm(A,1)
norm(A,'inf')
A=[1,2;3,4]
max(svd(A))-norm(A)

A=sparse([1 0 0 33 -1])
norm(A)

See Also

  • h_norm — H-infinity norm
  • dhnorm — discrete H-infinity norm
  • h2norm — H2 norm of a continuous time proper dynamical system
  • abs — absolute value, magnitude
  • svd — singular value decomposition
Report an issue
<< min Matrix operations prod >>

Copyright (c) 2022-2024 (Dassault Systèmes)
Copyright (c) 2017-2022 (ESI Group)
Copyright (c) 2011-2017 (Scilab Enterprises)
Copyright (c) 1989-2012 (INRIA)
Copyright (c) 1989-2007 (ENPC)
with contributors
Last updated:
Mon Oct 01 17:34:42 CEST 2012