Scilab 5.3.3
Please note that the recommended version of Scilab is 2025.0.0. This page might be outdated.
See the recommended documentation of this function
beta
beta function
Calling Sequence
z = beta(x,y)
Arguments
- x, y
2 positive reals or 2 matrices (or vectors) of positive reals of same size.
- z
a real or a matrix of the same size than
x
withz(i,j) = beta(x(i,j),y(i,j))
.
Description
Computes the complete beta function :
For small x
and y
the
algorithm uses the expression in function of the gamma function, else it
applies the exponential function onto the result of the
betaln
function provided with the DCDFLIB: Library of
Fortran Routines for Cumulative Distribution Functions, Inverses, and
Other Parameter (see cdfbet for more
information about DCDFLIB).
Examples
// example 1 : beta(5,2) - beta(2,5) // symetry (must be exactly 0) beta(0.5,0.5) // exact value is pi // example 2 : an error study based on the relation B(1,x) = 1/x // (computing 1/x must lead to only a relative error of eps_m, so // it may be used near as a reference to evaluate the error in B(1,x)) x = logspace(-8,8,20000)'; e = beta(ones(x),x) - (1)./x; er = abs(e) .* x; ind = find(er ~= 0); eps = ones(x(ind))*number_properties("eps"); clf() plot2d(x(ind),[er(ind) eps 2*eps],style=[1 2 3],logflag="ll",leg="er@eps_m@2 eps_m") xtitle("approximate relative error in computing beta(1,x)") show_window() // example 3 : plotting the beta function t = linspace(0.2,10,60); X = t'*ones(t); Y = ones(t')*t; Z = beta(X,Y); clf() plot3d(t, t, Z, flag=[2 4 4], leg="x@y@z", alpha=75, theta=30) xtitle("The beta function on [0.2,10]x[0.2,10]") show_window()
<< besseli | Fonctions spéciales | gamma >> |