Scilab 5.3.1
      
      - Scilab help
 - Scilab
 - Differential Equations, Integration
 - Elementary Functions
 - Linear Algebra
 - Interpolation
 - CACSD
 - Polynomials
 - Signal Processing
 - FFTW
 - Special Functions
 - Randlib
 - ARnoldi PACKage
 - Statistics
 - Sparse Matrix
 - UMFPACK Interface (sparse)
 - Optimization and Simulation
 - Genetic Algorithms
 - Simulated Annealing
 - Symbolic
 - Files : Input/Output functions
 - Input/Output functions
 - Graphics Library
 - Graphics : exporting and printing
 - GUI
 - Data Structures
 - Parameters
 - Boolean
 - Integers
 - Strings
 - Sound file handling
 - Time and Date
 - Output functions
 - Xcos
 - Spreadsheet
 - Shell
 - Console
 - Completion
 - History manager
 - Matlab binary files I/O
 - Matlab to Scilab Conversion Tips
 - Compatibility Functions
 - Maple Interface
 - Overloading
 - Functions
 - Development tools
 - Demo Tools
 - Dynamic/incremental Link
 - ATOMS
 - Tcl/Tk Interface
 - Text editor (Scinotes)
 - UI Data
 - Online help management
 - Parallel
 - PVM parallel Toolbox
 - Modules manager
 - Localization
 - JVM
 - API Scilab
 - call_scilab API (Scilab engine)
 - Java Interface
 - Intersci
 
Please note that the recommended version of Scilab is 2026.0.0. This page might be outdated.
However, this page did not exist in the previous stable version.
Genetic Algorithms
- coding_ga_binary — A function which performs conversion between binary and continuous representation
 - coding_ga_identity — A "no-operation" conversion function
 - crossover_ga_binary — A crossover function for binary code
 - crossover_ga_default — A crossover function for continuous variable functions
 - init_ga_default — A function a initialize a population
 - mutation_ga_binary — A function which performs binary mutation
 - mutation_ga_default — A continuous variable mutation function
 - optim_ga — A flexible genetic algorithm
 - optim_moga — multi-objective genetic algorithm
 - optim_nsga — A multi-objective Niched Sharing Genetic Algorithm
 - optim_nsga2 — A multi-objective Niched Sharing Genetic Algorithm version 2
 - pareto_filter — A function which extracts non dominated solution from a set
 - selection_ga_elitist — An 'elitist' selection function
 - selection_ga_random — A function which performs a random selection of individuals
 
| << Optimization and Simulation | Scilab help | Simulated Annealing >> |