Please note that the recommended version of Scilab is 2025.0.0. This page might be outdated.
See the recommended documentation of this function
dae
Differential algebraic equations solver
Calling Sequence
y=dae(initial,t0,t,res) [y [,hd]]=dae(initial,t0,t [,rtol, [atol]],res [,jac] [,hd]) [y,rd]=dae("root",initial,t0,t,res,ng,surface) [y ,rd [,hd]]=dae("root",initial,t0,t [,rtol, [atol]],res [,jac], ng, surface [,hd])
Arguments
- initial
a column vector. It may be equal to
x0
or[x0;xdot0]
. Wherex0
is the state value at initial timet0
andydot0
is the initial state derivative value or an estimation of it (see below).- t0
a real number, the initial time.
- t
real scalar or vector. Gives instants for which you want the solution. Note that you can get solution at each dae's step point by setting
%DAEOPTIONS(2)=1
.- rtol
a real scalar or a column vector of same size as
x0
.The
relative error tolerance of solution. Ifrtol
is a vector the tolerances are specified for each component ofthe state
.- atol
a real scalar or a column vector of same size as
x0
.The
absolute error tolerance of solution. Ifatol
is a vector the tolerances are specified for each component ofthe state
.- res
an external. Computes the value of
g(t,y,ydot)
. It may be- a Scilab function
In this case, Its calling sequence must be
[r,ires]=res(t,x,xdot)
andres
must return the residuer=g(t,x,xdot)
and error flagires
.ires = 0
ifres
succeeds to computer
,=-1
if residue is locally not defined for(t,x,xdot)
,=-2
if parameters are out of admissible range.- a list
This form of external is used to pass parameters to the function. It must be as follows:
list(res,p1,p2,...)
where the calling sequence of the function
res
is nowr=res(t,y,ydot,p1,p2,...)
res
still returns the residual value as a function of(t,x,xdot,x1,x2,...)
, and p1,p2,... are function parameters.- a character string
it must refer to the name of a C or fortran routine. Assuming that <r_name> is the given name.
The Fortran calling sequence must be
<r_name>(t,x,xdot,res,ires,rpar,ipar)
double precision t,x(*),xdot(*),res(*),rpar(*)
integer ires,ipar(*)
The C calling sequence must be
C2F(<r_name>)(double *t, double *x, double *xdot, double *res, integer *ires, double *rpar, integer *ipar)
where
t
is the current time valuex
the state arrayxdot
the array of state derivativesres the array of residuals
ires
the execution indicatorrpar
is the array of floating point parameter values, needed but cannot be set by thedae
functionipar
is the array of floating integer parameter values, needed but cannot be set by thedae
function
- jac
an external. Computes the value of
dg/dx+cj*dg/dxdot
for a given value of parametercj. It may be
- a Scilab function
Its calling sequence must be
r=jac(t,x,xdot,cj)
and thejac
function must returnr=dg(t,x,xdot)/dy+cj*dg(t,x,xdot)/dxdot
wherecj
is a real scalar- a list
This form of external is used to pass parameters to the function. It must be as follows:
list(jac,p1,p2,...)
where the calling sequence of the function
jac
is nowr=jac(t,x,xdot,p1,p2,...)
jac
still returnsdg/dx+cj*dg/dxdot
as a function of(t,x,xdot,cj,p1,p2,...)
.- a character string
it must refer to the name of a C or fortran routine. Assuming that <j_name> is the given name,
The Fortran calling sequence must be
<j_name>(t, x, xdot, r, cj, ires, rpar, ipar)
double precision t, x(*), xdot(*), r(*), ci, rpar(*)
integer ires, ipar(*)
The C calling sequence must be
C2F(<j_name>)(double *t, double *x, double *xdot, double *r, double *cj,
integer *ires, double *rpar, integer *ipar)
where
t
, x, xdot, ires, rpar, ipar have similar definition as above, r is the results array
- surface
an external. Computes the value of the column vector
surface(t,x)
withng
components. Each component defines a surface.- a Scilab function
Its calling sequence must be
r=surface(t,x)
, this function must return a vector withng
elements.- a list
This form of external is used to pass parameters to the function. It must be as follows:
list(surface,p1,p2,...)
where the calling sequence of the function
surface
is nowr=surface(t,x,p1,p2,...)
- character string
it must refer to the name of a C or fortran routine. Assuming that <s_name> is the given name,
The Fortran calling sequence must be
<r_name>(nx, t, x, ng, r, rpar, ipar)
double precision t, x(*), r(*), rpar(*)
integer nx, ng,ipar(*)
The C calling sequence must be
C2F(<r_name>)(double *t, double *x, double *xdot, double *r, double *cj,
integer *ires, double *rpar, integer *ipar)
where
t
, x, rpar, ipar have similar definition as above,ng
is the number of surfaces,nx
the dimension of the state and r is the results array.
- rd
a vector with two entries
[times num]
times
is the value of the time at which the surface is crossed,num
is the number of the crossed surface- hd
a real vector, an an output it stores the
dae
context. It can be used as an input argument to resume integration (hot restart).- y
real matrix . If
%DAEOPTIONS(2)=1
, each column is the vector[t;x(t);xdot(t)]
wheret
is time index for which the solution had been computed. Elsey
is the vector[x(t);xdot(t)]
.
Description
The dae
function is a gateway built above the
dassl and dasrt
function designed for implicit differential equations integration.
g(t,x,xdot)=0 x(t0)=x0 and xdot(t0)=xdot0
If xdot0
is not given in theinitial
argument, the dae function tries to compute it solving
g(t,x0,xdot0)=0,
if xdot0
is given in theinitial
argumente it may be either a compatible derivative
satisfying g(t,x0,xdot0)=0 or an approximate value . In the latter case
%DAEOPTIONS(7) must be set to
1.
Detailed examples using Scilab and C coded externals are given in
modules/differential_equations/tests/unit_tests/dassldasrt.tst
Examples
//Example with Scilab code function [r, ires]=chemres(t, y, yd) r(1) = -0.04*y(1) + 1d4*y(2)*y(3) - yd(1); r(2) = 0.04*y(1) - 1d4*y(2)*y(3) - 3d7*y(2)*y(2) - yd(2); r(3) = y(1) + y(2) + y(3)-1; ires = 0; endfunction function pd=chemjac(x, y, yd, cj) pd=[-0.04-cj , 1d4*y(3) , 1d4*y(2); 0.04 ,-1d4*y(3)-2*3d7*y(2)-cj ,-1d4*y(2); 1 , 1 , 1 ] endfunction x0=[1; 0; 0]; xd0=[-0.04; 0.04; 0]; t=[1.d-5:0.02:.4, 0.41:.1:4, 40, 400, 4000, 40000, 4d5, 4d6, 4d7, 4d8, 4d9, 4d10]; y=dae([x0,xd0],0,t,chemres);// returns requested observation time points %DAEOPTIONS=list([],1,[],[],[],0,0); // ask dae mesh points to be returned y=dae([x0,xd0],0,4d10,chemres); // without jacobian y=dae([x0,xd0],0,4d10,chemres,chemjac); // with jacobian //example with C code (c compiler needed) -------------------------------------------------- //-1- create the C codes in TMPDIR - Vanderpol equation, implicit form code=['#include <math.h>' 'void res22(double *t,double *y,double *yd,double *res,int *ires,double *rpar,int *ipar)' '{res[0] = yd[0] - y[1];' ' res[1] = yd[1] - (100.0*(1.0 - y[0]*y[0])*y[1] - y[0]);}' ' ' 'void jac22(double *t,double *y,double *yd,double *pd,double *cj,double *rpar,int *ipar)' '{pd[0]=*cj - 0.0;' ' pd[1]= - (-200.0*y[0]*y[1] - 1.0);' ' pd[2]= - 1.0;' ' pd[3]=*cj - (100.0*(1.0 - y[0]*y[0]));}' ' ' 'void gr22(int *neq, double *t, double *y, int *ng, double *groot, double *rpar, int *ipar)' '{ groot[0] = y[0];}'] mputl(code,TMPDIR+'/t22.c') //-2- compile and load them ilib_for_link(['res22' 'jac22' 'gr22'],'t22.c',[],'c',TMPDIR+'/Makefile',TMPDIR+'/t22loader.sce'); exec(TMPDIR+'/t22loader.sce') //-3- run rtol=[1.d-6;1.d-6];atol=[1.d-6;1.d-4]; t0=0;y0=[2;0];y0d=[0;-2];t=[20:20:200];ng=1; //simple simulation t=0:0.003:300; yy=dae([y0,y0d],t0,t,atol,rtol,'res22','jac22'); clf();plot(yy(1,:),yy(2,:)) //find first point where yy(1)=0 [yy,nn,hotd]=dae("root",[y0,y0d],t0,300,atol,rtol,'res22','jac22',ng,'gr22'); plot(yy(1,1),yy(2,1),'r+') xstring(yy(1,1)+0.1,yy(2,1),string(nn(1))) //hot restart for next point t01=nn(1);[pp,qq]=size(yy);y01=yy(2:3,qq);y0d1=yy(3:4,qq); [yy,nn,hotd]=dae("root",[y01,y0d1],t01,300,atol,rtol,'res22','jac22',ng,'gr22',hotd); plot(yy(1,1),yy(2,1),'r+') xstring(yy(1,1)+0.1,yy(2,1),string(nn(1)))
See Also
<< bvode | Differential Equations, Integration | daeoptions >> |