Scilab Website | Contribute with GitLab | Mailing list archives | ATOMS toolboxes
Scilab Online Help
5.3.0 - Français

Change language to:
English - 日本語 - Português

Please note that the recommended version of Scilab is 2024.1.0. This page might be outdated.
See the recommended documentation of this function

Manuel Scilab >> Statistiques > cdft

cdft

fonction de répartition de la distribution de Student

Séquence d'appel

[P,Q]=cdft("PQ",T,Df)
[T]=cdft("T",Df,P,Q)
[Df]=cdft("Df",P,Q,T)

Paramètres

P,Q,T,Df

six vecteurs réels de même taille.

P,Q (Q=1-P)

l'intégrale de -infini à T de la densité de Student. comprise entre : (0,1].

T

borne d'intégration supérieure. En entrée : ( -infini, +infini). En recherche : [ -1E150, 1E150 ]

DF:

Degrés de libertés de la distribution. En entrée : (0 , +infini). En recherche : [1e-300, 1E10]

Description

Étant donnés les autres, calcule un paramètre de la distribution de Student.

La formule 26.5.27 de Abramowitz et Stegun, Handbook of Mathematical Functions (1966) est utilisée pour réduire le calcul de la fonction de répartition de la distribution à celle d'une loi beta incomplète.

Le calcul des autres paramètres implique une recherche d'une valeur conduisant à la valeur désirée pour P. La recherche dépend de la monotonicité de P par rapport aux autres paramètres.

<< cdfpoi Statistiques median >>

Copyright (c) 2022-2024 (Dassault Systèmes)
Copyright (c) 2017-2022 (ESI Group)
Copyright (c) 2011-2017 (Scilab Enterprises)
Copyright (c) 1989-2012 (INRIA)
Copyright (c) 1989-2007 (ENPC)
with contributors
Last updated:
Wed Jan 26 16:24:14 CET 2011