contr
controllability, controllable subspace, staircase
Syntax
n = contr(A, B) [n, U] = contr(A, B) [n, U, ind, V, Ac, Bc] = contr(A, B) .. = contr(.., tol)
Arguments
- A, B
 real matrices
- tol
 tolerance parameter
- n
 dimension of controllable subspace.
- U
 orthogonal change of basis which puts
(A,B)in canonical form.- V
 orthogonal matrix, change of basis in the control space.
- Ac
 block Hessenberg matrix
Ac=U'*A*U- Bc
 is
U'*B*V.- ind
 p integer vector associated with controllability indices (dimensions of subspaces
B, B+A*B,...=ind(1),ind(1)+ind(2),...)
Description
[n,[U]]=contr(A,B,[tol]) gives the controllable form of an (A,B)
            pair.(dx/dt = A x + B u or x(n+1) = A x(n) +b u(n)).
            The n first columns of U make a basis for the controllable
            subspace.
If V=U(:,1:n), then V'*A*V and  V'*B give the controllable part
            of the (A,B) pair.
The pair (Bc, Ac) is in staircase controllable form.
|B |sI-A * . . . * * | | 1| 11 . . . | | | A sI-A . . . | | | 21 22 . . . | | | . . * * | [U'BV|sI - U'AU] = |0 | 0 . . | | | A sI-A * | | | p,p-1 pp | | | | |0 | 0 0 sI-A | | | p+1,p+1|
Reference
Slicot library (see ab01od in SCI/modules/cacsd/src/slicot).
Examples
See also
| Report an issue | ||
| << cont_mat | Controllability Observability | contrss >> |