Scilab Website | Contribute with GitLab | Mailing list archives | ATOMS toolboxes
Scilab Online Help
2025.0.0 - Français


corr

correlation, covariance

Syntax

[cov,Mean] = corr(x,[y],nlags)
[cov,Mean] = corr('fft',xmacro,[ymacro],n,sect)

[w,xu] = corr('updt',x1,[y1],w0)
[w,xu] = corr('updt',x2,[y2],w,xu)
...
wk = corr('updt',xk,[yk],w,xu)

Arguments

x

a real vector

y

a real vector, default value x.

nlags

integer, number of correlation coefficients desired.

xmacro

a scilab external (see below).

ymacro

a scilab external (see below), default value xmacro

n

an integer, total size of the sequence (see below).

sect

size of sections of the sequence (see below).

xi

a real vector

yi

a real vector,default value xi.

cov

real vector, the correlation coefficients

Mean

real number or vector, the mean of x and if given y

Description

corr(x,y,…) computes cov(m)=sum_{k=1}^{n-m} (x(k)-mean(x))(y(m+k)-mean(y)) / n for m = 0, …, nlag-1.

Note that if x and y sequences are differents corr(x,y,...) is different with corr(y,x,...)

Short sequences

[cov,Mean]=corr(x,[y],nlags) returns the first nlags correlation coefficients and Mean = mean(x) (mean of [x,y] if y is an argument). The sequence x (resp. y) is assumed real, and x and y are of same dimension n.

Long sequences

[cov,Mean]=corr('fft',xmacro,[ymacro],n,sect). Here xmacro is either

  • a function of type [xx]=xmacro(sect,istart) which returns a vector xx of dimension nsect containing the part of the sequence with indices from istart to istart+sect-1.

  • a fortran subroutine or C procedure which performs the same calculation. (See the source code of dgetx for an example).

n = total size of the sequence. sect = size of sections of the sequence. sect must be a power of 2. cov has dimension sect. Calculation is performed by FFT.

Updating method
[w,xu]=corr('updt',x1,[y1],w0)
[w,xu]=corr('updt',x2,[y2],w,xu)
 ...
wk=corr('updt',xk,[yk],w,xu)

With this syntax the calculation is updated at each call to corr.

w0 = zeros(1,2*nlags);
nlags = power of 2.

x1,x2,... are parts of x such that x=[x1,x2,...] and sizes of xi a power of 2. To get nlags coefficients a final fft must be performed c=fft(w,1)/n; cov=c(1nlags) (n is the size of x (y)). Caution: this syntax assumes that xmean = ymean = 0.

Examples

x = %pi/10:%pi/10:102.4*%pi;
rand('seed');
rand('normal');
y = [.8 * sin(x) + .8 * sin(2*x) + rand(x); .8 * sin(x) + .8 * sin(1.99*x) + rand(x)];
c = [];
for j = 1:2
    for k = 1:2
        c = [c; corr(y(k, :), y(j, :), 64)];
    end
end
c = matrix(c, 2, 128);
cc = [];
for j = 1:64
    cc = [cc; c(:, (j - 1) * 2 + 1:2 * j)];
end

rand('seed');
rand('normal');
x = rand(1, 256);
y = -x;
deff('[z] = xx(inc, is)','z = x(is:is+inc-1)');
deff('[z] = yy(inc, is)','z = y(is:is+inc-1)');
[c, mxy] = corr(x, y, 32);
x = x - mxy(1) * ones(x);
y = y - mxy(2) * ones(y);  //centring
c1 = corr(x, y, 32);
c2 = corr(x, 32);
norm(c1 + c2, 1)
[c3, m3] = corr('fft', xx, yy, 256, 32);
norm(c1 - c3, 1)
[c4, m4] = corr('fft', xx, 256, 32);
norm(m3, 1)
norm(m4, 1)
norm(c3 - c1, 1)
norm(c4 - c2, 1)
x1 = x(1:128);
x2 = x(129:256);
y1 = y(1:128);
y2 = y(129:256);
w0 = zeros(1, 64);
[w1, xu] = corr('u', x1, y1, w0);
w2 = corr('u', x2, y2, w1, xu);
zz = real(fft(w2, 1)) / 256;
c5 = zz(1:32);
norm(c5 - c1, 1)
[w1, xu] = corr('u', x1, w0);
w2 = corr('u', x2, w1, xu);
zz = real(fft(w2, 1)) / 256;
c6 = zz(1:32);
norm(c6 - c2, 1)

// test for Fortran or C external
deff('[y] = xmacro(sec, ist)','y = sin(ist:(ist+sec-1))');
x = xmacro(100, 1);
[cc1, mm1] = corr(x, 2^3);
[cc, mm] = corr('fft', xmacro, 100, 2^3);
[cc2, mm2]=corr('fft', 'corexx', 100, 2^3);
[max(abs(cc - cc1)), max(abs(mm - mm1)), max(abs(cc - cc2)), max(abs(mm - mm2))]

deff('[y] = ymacro(sec, ist)','y = cos(ist:(ist+sec-1))');
y = ymacro(100, 1);
[cc1, mm1] = corr(x, y, 2^3);
[cc, mm] = corr('fft', xmacro, ymacro, 100, 2^3);
[cc2, mm2] = corr('fft', 'corexx', 'corexy', 100, 2^3);
[max(abs(cc - cc1)), max(abs(mm - mm1)), max(abs(cc - cc2)), max(abs(mm - mm2))]

See also

  • xcorr — Computes discrete auto or cross correlation
  • xcov — Computes discrete auto or cross covariance
  • correl — correlation of two variables
  • cov — Sample covariance matrix
  • covar — covariance of two variables
Report an issue
<< convol2d Convolution - intercorrélation hank >>

Copyright (c) 2022-2024 (Dassault Systèmes)
Copyright (c) 2017-2022 (ESI Group)
Copyright (c) 2011-2017 (Scilab Enterprises)
Copyright (c) 1989-2012 (INRIA)
Copyright (c) 1989-2007 (ENPC)
with contributors
Last updated:
Thu Oct 24 11:15:58 CEST 2024