contr
controllability, controllable subspace, staircase
Syntax
n = contr(A, B) [n, U] = contr(A, B) [n, U, ind, V, Ac, Bc] = contr(A, B) .. = contr(.., tol)
Arguments
- A, B
real matrices
- tol
tolerance parameter
- n
dimension of controllable subspace.
- U
orthogonal change of basis which puts
(A,B)
in canonical form.- V
orthogonal matrix, change of basis in the control space.
- Ac
block Hessenberg matrix
Ac=U'*A*U
- Bc
is
U'*B*V
.- ind
p integer vector associated with controllability indices (dimensions of subspaces
B, B+A*B,...=ind(1),ind(1)+ind(2),...
)
Description
[n,[U]]=contr(A,B,[tol])
gives the controllable form of an (A,B)
pair.(dx/dt = A x + B u
or x(n+1) = A x(n) +b u(n)
).
The n
first columns of U
make a basis for the controllable
subspace.
If V=U(:,1:n)
, then V'*A*V
and V'*B
give the controllable part
of the (A,B)
pair.
The pair (Bc, Ac)
is in staircase controllable form.
|B |sI-A * . . . * * | | 1| 11 . . . | | | A sI-A . . . | | | 21 22 . . . | | | . . * * | [U'BV|sI - U'AU] = |0 | 0 . . | | | A sI-A * | | | p,p-1 pp | | | | |0 | 0 0 sI-A | | | p+1,p+1|
Reference
Slicot library (see ab01od in SCI/modules/cacsd/src/slicot).
Examples
See also
Report an issue | ||
<< cont_mat | Controllability Observability | contrss >> |