Scilab Website | Contribute with GitLab | Mailing list archives | ATOMS toolboxes
Scilab Online Help
2024.0.0 - Français


intl

Cauchy integral along a circular arc

Syntax

y = intl(a, b, z0, r, f)
y = intl(a, b, z0, r, f, abserr)
y = intl(a, b, z0, r, f, abserr, relerr)

Arguments

z0
a complex number

a, b
two real numbers

r
positive real number

f
identifier of the function to be integrated (type 13 or 130).

abserr, relerr
real scalars: absolute and relative numerical tolerances. Default values are 1.d-13 and 1d-8.

Description

If f is a complex-valued function, intl(a,b,z0,r,f) computes the integral of f(z)dz along the curve in the complex plane defined by z0 + r.*exp(%i*t) for a<=t<=b .(part of the circle with center z0 and radius r with phase between a and b).

Examples

function y=f(z)
  y = z^(3 + %pi * %i)
endfunction

intl(1, 2, 1+%i, 3, f)

See also

  • intc — intégrale dans le plan complexe, selon un chemin rectiligne
  • integrate — intégration numérique d'une expression

History

VersionDescription
2024.0.0 Default abserr and relerr values standardized: 1d-13 and 1d-8 instead of %eps and 1d-12.
Report an issue
<< intg Equations différentielles intsplin >>

Copyright (c) 2022-2024 (Dassault Systèmes)
Copyright (c) 2017-2022 (ESI Group)
Copyright (c) 2011-2017 (Scilab Enterprises)
Copyright (c) 1989-2012 (INRIA)
Copyright (c) 1989-2007 (ENPC)
with contributors
Last updated:
Tue Oct 24 14:34:13 CEST 2023