Scilab Website | Contribute with GitLab | Mailing list archives | ATOMS toolboxes
Scilab Online Help
2023.1.0 - Français


svd

décomposition en valeurs singulières

Séquence d'appel

s=svd(X)
[U,S,V]=svd(X)
[U,S,V]=svd(X,0) (obsolete)
[U,S,V]=svd(X,"e")
[U,S,V,rk]=svd(X [,tol])

Paramètres

X

matrice réelle ou complexe

s

vecteur réel (valeurs singulières)

S

matrice réelle diagonale (valeurs singulières sur la diagonale)

U,V

matrices carrées unitaires (vecteurs singuliers).

tol

nombre réel positif

Description

[U,S,V]=svd(X) renvoie une matrice diagonale S, de même dimension que X avec des éléments diagonaux positifs classés par ordre décroissant, ainsi que deux matrices unitaires U et V telles que X = U*S*V'.[U,S,V]=svd(X,"e") renvoie la décomposition réduite : si X est une matrice m x n et que m > n alors seulement les n premières colonnes de U sont calculées et S est n x n.

s=svd(X) renvoie un vecteur s contenant les valeurs singulières.

[U,S,V,rk]=svd(X [,tol]) renvoie de plus rk, le rang "numérique" de X c'est à dire le nombre de valeurs singulières plus grandes que tol.

La valeur par défaut de tol est la même que pour la fonction rank.

Exemples

X=rand(4,2)*rand(2,4)
svd(X)
sqrt(spec(X*X'))

Voir aussi

  • rank — rang
  • qr — factorisation QR
  • colcomp — compression de colonnes, noyau
  • rowcomp — compression de lignes, image
  • sva — approximation de valeurs singulières
  • spec — valeurs propres, et vecteurs propres d'une matrice ou d'un faisceau de matrices

Fonctions Utilisées

la décomposition svd est basée sur les routines DGESVD pour les matrices réelles et ZGESVD pour le cas complexe.

History

VersionDescription
2023.0.0

svd(X, 0) est obsolète, utilisez svd(X, "e") à la place.

Report an issue
<< sva Eigenvalue and Singular Value Factorisation >>

Copyright (c) 2022-2024 (Dassault Systèmes)
Copyright (c) 2017-2022 (ESI Group)
Copyright (c) 2011-2017 (Scilab Enterprises)
Copyright (c) 1989-2012 (INRIA)
Copyright (c) 1989-2007 (ENPC)
with contributors
Last updated:
Mon May 22 12:39:41 CEST 2023