Scilab Website | Contribute with GitLab | Mailing list archives | ATOMS toolboxes
Scilab Online Help
2023.0.0 - Português


copfac

right coprime factorization of continuous time dynamical systems

Syntax

[N, M, XT, YT] = copfac(G)
[N, M, XT, YT] = copfac(G, polf, polc, tol)

Arguments

G

a continuous-time linear dynamical system.

polf, polc

respectively the poles of XT and YT and the poles of n and M (default values =-1).

tol

real threshold for detecting stable poles (default value 100*%eps)

N,M,XT,YT

continuous-time linear dynamical systems.

Description

[N,M,XT,YT]=copfac(G,[polf,polc,[tol]]) returns a right coprime factorization of G.

G= N*M^-1 where N and M are stable, proper and right coprime. (i.e. [N M] left-invertible with stability)

XT and YT satisfy:

[XT -YT].[M N]' = eye (Bezout identity)

G is assumed stabilizable and detectable.

See also

  • syslin — definição de sistemas lineares
  • lcf — Continuous time dynamical systems normalized coprime factorization

History

VersionDescription
5.4.0 Sl is now checked for continuous time linear dynamical system. This modification has been introduced by this commit
Report an issue
<< colinout Linear System Factorization dcf >>

Copyright (c) 2022-2024 (Dassault Systèmes)
Copyright (c) 2017-2022 (ESI Group)
Copyright (c) 2011-2017 (Scilab Enterprises)
Copyright (c) 1989-2012 (INRIA)
Copyright (c) 1989-2007 (ENPC)
with contributors
Last updated:
Mon Mar 27 09:49:53 GMT 2023