kron .*.
Kronecker tensorial product. Weighted array replication
Syntax
P = kron(A, B) P = A .*. B
Arguments
- A, B
Arrays of size (a1, a2, ..) and (b1, b2, ..), with any number of dimensions. If
A
orB
is sparse, the other one can't be an hypermatrix.Supported encodings and types: boolean, integer, real, complex, polynomial, rational, sparse boolean, sparse real, sparse complex.
- P
Array of
A
andB
data type, and of size (a1*b1, a2*b2, ..). IfA
orB
is sparse,P
is sparse.
Description
kron(A,B)
or A .*. B
returns the
Kronecker tensor product of two matrices or hypermatricesA
and
B
. The resulting matrix has the following block
form:
If A
is a m x n
matrix and
B
a p x q x r
hypermatrix then
A.*.B
is a (m*p) x (n*q) x (1*r)
hypermatrix.
Examples
A = [1 3 ; 2 4] B = [1 10 100] kron(A, B) A .*. B B .*. A
--> A = [1 3 ; 2 4] A = 1. 3. 2. 4. --> B = [1 10 100] B = 1. 10. 100. --> kron(A, B) ans = 1. 10. 100. 3. 30. 300. 2. 20. 200. 4. 40. 400. --> A .*. B ans = 1. 10. 100. 3. 30. 300. 2. 20. 200. 4. 40. 400. --> B .*. A ans = 1. 3. 10. 30. 100. 300. 2. 4. 20. 40. 200. 400.
With sparse matrices:
--> P = [-1 0 1 10] .*. sparse([0 1 2]) P = ( 1, 12) sparse matrix ( 1, 2) -1. ( 1, 3) -2. ( 1, 8) 1. ( 1, 9) 2. ( 1, 11) 10. ( 1, 12) 20. --> full(P) ans = 0. -1. -2. 0. 0. 0. 0. 1. 2. 0. 10. 20.
With complex numbers:
A = [-1 1 ; -%i %i] A .*. A
--> A = [-1 1 ; -%i %i] A = -1. 1. -i i --> A .*. A ans = 1. -1. -1. 1. i -i -i i i -i -i i -1. 1. 1. -1.
With hypermatrices:
See Also
- kron .\. ./. — Kronecker left and right divisions
- star — (*) multiplication operator
- prod — product of array elements
- cumprod — cumulative product of array elements
- repmat — Replicate and tile an array
History
Version | Description |
5.5.1 | Extension to hypermatrices. |
6.1.1 | Extension to boolean and sparse boolean arrays. |
Report an issue | ||
<< cumsum | Matrix operations | kron .\. ./. >> |