Scilab Website | Contribute with GitLab | Mailing list archives | ATOMS toolboxes
Scilab Online Help
5.5.2 - Русский

Change language to:
English - Français - 日本語 - Português -

Please note that the recommended version of Scilab is 2025.0.0. This page might be outdated.
See the recommended documentation of this function

Справка Scilab >> Scilab > Ключевые слова Scilab > обратный слэш (\)

обратный слэш (\)

(\) левое матричное деление.

Последовательность вызова

X=A\B

Описание

Обратный слэш означает левое матричное деление. X=A\B является решением для A*X=B.

Если A - квадратная и невырожденная, то X=A\B (уникально определённая) эквивалентно X=inv(A)*B в точном арифметическом смысле, однако вычисления гораздо точнее и дешевле в арифметике с плавающей запятой. Следовательно, чтобы вычислить решение линейной системы уравнений A*X=B, следует использовать оператор "обратный слэш", а функцию inv не следует использовать.

В случае, когда A - квадратная матрица, решение X может быть вычислено либо через LU-разложение, либо через программу линейного решения по методу наименьших квадратов. Если число обусловленности матрицы A меньше, чем 1/(10*%eps) (то есть, если A хорошо обусловлена), то используется LU-разложение с перестановками строк матрицы. Если нет (то есть, если A плохо обусловлена), то X является решением с минимальной нормой, которое минимизирует ||A*X-B|| используя полное ортогональное разложение A (то есть X - это решение линейной задачи по методу наименьших квадратов).

Если A не квадратная, то X является решением наименьших квадратов, т.е. norm(A*X-B) является минимальной (эвклидова норма). Если ранг матрицы A полный, то решение наименьших квадратов, X=A\B, является уникально определённым (есть уникальное X, которое минимизирует norm(A*X-B)). Если ранг матрицы A неполный, то решение наименьших квадратов не является уникальным, и X=A\B, в общем, не является решением с минимальной нормой (решение минимальной нормы равно X=pinv(A)*B).

A.\B является матрицей с (i,j)-тым элементом, равным A(i,j)\B(i,j). Если A (или B) является скаляром, то A.\B эквивалентно A*ones(B).\B (или A.\(B*ones(A)).

A\.B является оператором без предопределённого значения. Он может использоваться для определения нового оператора (см. перегрузку) с тем же самым приоритетом что и * или /.

Примеры

A=[
   9.   -36.    30.
  -36.   192.  -180.
   30.  -180.   180.
];
b=[
   3.
  -24.
   30.
];
x=A\b
A*x-b // close to zero

A=rand(3,2);
b=[1;1;1];
x=A\b;
y=pinv(A)*b;
x-y
A=rand(2,3);b=[1;1];
x=A\b;
y=pinv(A)*b;
x-y, A*x-b, A*y-b

// если ранг неполный
A=rand(3,1)*rand(1,2);
b=[1;1;1];
x=A\b;
y=pinv(A)*b;
A*x-b, A*y-b
A=rand(2,1)*rand(1,3);
b=[1;1];
x=A\b;
y=pinv(A)*b;
A*x-b, A*y-b
 
// Проверка эффективности нескольких программ решения систем линейных уравнений
 
[A,descr,ref,mtype] = ReadHBSparse(SCI+"/modules/umfpack/examples/bcsstk24.rsa"); 
 
b = zeros(size(A,1),1);
 
tic();
res = umfpack(A,'\',b);
mprintf('\nвремя, необходимое для решения системы с помощью umfpack: %.3f\n',toc());
 
tic();
res = linsolve(A,b);
mprintf('\nвремя, необходимое для решения системы с помощью linsolve: %.3f\n',toc());
 
tic();
res = A\b;
mprintf('\nвремя, необходимое для решения системы с помощью оператора ""обратный слэш"": %.3f\n',toc());

Смотрите также

  • слэш — (/) правое деление и обратная связь
  • inv — matrix inverse
  • pinv — pseudoinverse
  • процент — (%) специальный символ
  • ieee — установка режима исключения с плавающей запятой
  • linsolve — linear equation solver
  • umfpack — solve sparse linear system

History

ВерсияОписание
5.4.1 Пороговый уровень для обусловливания в обратном слэше увеличен.
Report an issue
<< ans Ключевые слова Scilab квадратные скобки >>

Copyright (c) 2022-2024 (Dassault Systèmes)
Copyright (c) 2017-2022 (ESI Group)
Copyright (c) 2011-2017 (Scilab Enterprises)
Copyright (c) 1989-2012 (INRIA)
Copyright (c) 1989-2007 (ENPC)
with contributors
Last updated:
Wed Apr 01 10:27:12 CEST 2015