- Scilab help
- Statistics
- cdfbet
- cdfbin
- cdfchi
- cdfchn
- cdff
- cdffnc
- cdfgam
- cdfnbn
- cdfnor
- cdfpoi
- cdft
- center
- wcenter
- cmoment
- correl
- covar
- ftest
- ftuneq
- geomean
- harmean
- iqr
- mad
- mean
- meanf
- median
- moment
- msd
- mvvacov
- nancumsum
- nand2mean
- nanmax
- nanmean
- nanmeanf
- nanmedian
- nanmin
- nanstdev
- nansum
- nfreq
- pca
- perctl
- princomp
- quart
- regress
- sample
- samplef
- samwr
- show_pca
- st_deviation
- stdevf
- strange
- tabul
- thrownan
- trimmean
- variance
- variancef
Please note that the recommended version of Scilab is 2025.0.0. This page might be outdated.
However, this page did not exist in the previous stable version.
msd
mean squared deviation
Calling Sequence
y=msd(x) y=msd(x,'r') or m=msd(x,1) y=msd(x,'c') or m=msd(x,2)
Arguments
- x
real or complex vector or matrix
Description
This function computes the mean squared deviation of the values of a
vector or matrix x
.
For a vector or a matrix x
, y=msd(x)
returns in the
scalar y
the mean squared deviation of all the entries of x
.
y=msd(x,'r')
(or, equivalently, y=msd(x,1)
) is the
rowwise mean squared deviation. It returns in each entry of the row
vector y
the mean squared deviation of each column of x
.
y=msd(x,'c')
(or, equivalently, m=msd(x,2)
) is the
columnwise mean squared deviation. It returns in each entry of the
column vector y
the mean squared deviation of each row of x
.
Examples
x=[0.2113249 0.0002211 0.6653811;0.7560439 0.3303271 0.6283918] m=msd(x) m=msd(x,'r') m=msd(x,'c')
Authors
Carlos Klimann
Bibliography
Wonacott, T.H. & Wonacott, R.J.; Introductory Statistics, fifth edition, J.Wiley & Sons, 1990.
<< moment | Statistics | mvvacov >> |