Scilab Website | Contribute with GitLab | Mailing list archives | ATOMS toolboxes
Scilab Online Help
5.5.0 - English

Change language to:
Français - 日本語 - Português - Русский

Please note that the recommended version of Scilab is 2025.0.0. This page might be outdated.
See the recommended documentation of this function

Scilab Help >> Signal Processing > filters > sskf

sskf

steady-state Kalman filter

Calling Sequence

xe = sskf(y,f,h,q,r,x0)
[xe, pe]=sskf(y,f,h,q,r,x0)

Arguments

y

data in form [y0,y1,...,yn], yk a column vector

f

system matrix dim(NxN)

h

observations matrix dim(MxN)

q

dynamics noise matrix dim(NxN)

r

observations noise matrix dim(MxM)

x0

initial state estimate

xe

estimated state

pe

steady-state error covariance

Description

steady-state Kalman filter

Examples

rand("seed",5);
rand("normal");
q=[.03 0.01;.01 0.03];
u=rand(2,11);
f=[1.1 0.1;0 0.8];
g=(chol(q))';
m0=[10 10]';
p0=[2 0;0 2];
x0=m0+(chol(p0))'*rand(2,1);
x=ltitr(f,g,u,x0);
r=[2 0;0 2];
v=(chol(r))'*rand(2,11);
y=x+v;
h=eye(2,2);
[xe pe]=sskf(y,f,h,q,r,m0)
Report an issue
<< srkf filters syredi >>

Copyright (c) 2022-2024 (Dassault Systèmes)
Copyright (c) 2017-2022 (ESI Group)
Copyright (c) 2011-2017 (Scilab Enterprises)
Copyright (c) 1989-2012 (INRIA)
Copyright (c) 1989-2007 (ENPC)
with contributors
Last updated:
Fri Apr 11 14:06:52 CEST 2014