intl
Cauchy integral along a circular arc
Syntax
y = intl(a, b, z0, r, f) y = intl(a, b, z0, r, f, abserr) y = intl(a, b, z0, r, f, abserr, relerr)
Arguments
- z0
- a complex number
- a, b
- two real numbers
- r
- positive real number
- f
- identifier of the function to be integrated (type 13 or 130).
- abserr, relerr
- real scalars: absolute and relative numerical tolerances.
                    Default values are 1.d-13and1d-8.
Description
If f is a complex-valued function,
            intl(a,b,z0,r,f) computes the integral of
            f(z)dz along the curve in the complex plane defined by
            z0 + r.*exp(%i*t) for a<=t<=b
            .(part of the circle with center z0 and radius
            r with phase between a and
            b).
Examples
function y=f(z) y = z^(3 + %pi * %i) endfunction intl(1, 2, 1+%i, 3, f)
See also
History
| Version | Description | 
| 2024.0.0 | Default abserrandrelerrvalues
                    standardized:1d-13and1d-8instead of%epsand1d-12. | 
| Report an issue | ||
| << intg | Differential Equations | intsplin >> |