Please note that the recommended version of Scilab is 2026.0.0. This page might be outdated.
See the recommended documentation of this function
augment
augmented plant
Syntax
[P, r] = augment(G) [P, r] = augment(G, flag1) [P, r] = augment(G, flag1, flag2)
Arguments
- G
linear system (
syslinlist), the nominal plant- flag1
one of the following (upper case) character string:
'S','R','T''SR','ST','RT''SRT'- flag2
one of the following character string:
'o'(stands for 'output', this is the default value) or'i'(stands for 'input').- P
linear system (
syslinlist), the ``augmented'' plant- r
1x2 row vector, dimension of
P22 = G
Description
If flag1='SRT' (default value), returns the "full" augmented plant
[ I | -G] ⇒ 'S'
[ 0 | I] ⇒ 'R'
P = [ 0 | G] ⇒ 'T'
[-------]
[ I | -G]
'S', 'R', 'T' refer to the first three (block) rows
of P respectively.
If one of these letters is absent in flag1, the corresponding
row in P is missing.
If G is given in state-space form, the returned P is minimal.
P is calculated by: [I,0,0;0,I,0;-I,0,I;I,0,0]*[I,-G;0,I;I,0].
The augmented plant associated with input sensitivity functions, namely
[ I | -I] ⇒ 'S' (input sensitivity)
[ G | -G] ⇒ 'R' (K*input sensitivity)
P = [ 0 | I] ⇒ 'T' (K*G*input sensitivity)
[-------]
[ G | -G]
is obtained by the command [P,r]=augment(G,flag,'i'). For
state-space G, this P
is calculated by: [I,-I;0,0;0,I;0,0]+[0;I;0;I]*G*[I,-I]
and is thus generically minimal.
Note that weighting functions can be introduced by left-multiplying
P by a diagonal system of appropriate dimension, e.g.,
P = blockdiag(W1,W2,W3,eye(G))*P.
Sensitivity functions can be calculated by lft. One has:
For output sensitivity functions [P,r]=augment(P,'SRT'): lft(P,r,K)=[inv(eye()+G*K);K*inv(eye()+G*K);G*K*inv(eye()+G*K)];
For input sensitivity functions [P,r]=augment(P,'SRT','i'): lft(P,r,K)=[inv(eye()+K*G);G*inv(eye()+K*G);K*G*inv(eye()+G*K)];
Examples
G = ssrand(2,3,2); // Plant K = ssrand(3,2,2); // Compensator [P,r] = augment(G,'T'); T = lft(P,r,K); // Complementary sensitivity function Ktf = ss2tf(K); Gtf = ss2tf(G); Ttf = ss2tf(T); T11 = Ttf(1,1); Oloop = Gtf * Ktf; Tn = Oloop * inv(eye(Oloop)+Oloop); clean(T11 - Tn(1,1)); // [Pi,r] = augment(G,'T','i'); T1 = lft(Pi,r,K); T1tf = ss2tf(T1); // Input Complementary sensitivity function Oloop = Ktf * Gtf; T1n = Oloop * inv(eye(Oloop)+Oloop); clean(T1tf(1,1) - T1n(1,1))
| Report an issue | ||
| << Boucles de contrôle | Boucles de contrôle | feedback >> |