Scilab Website | Contribute with GitLab | Mailing list archives | ATOMS toolboxes
Scilab Online Help
6.1.1 - English

Change language to:
Français - 日本語 - Português - Русский

Please note that the recommended version of Scilab is 2025.0.0. This page might be outdated.
See the recommended documentation of this function

Scilab Help >> Signal Processing > Filters > lev

lev

Yule-Walker equations (Levinson's algorithm)

Syntax

[ar, sigma2, rc]=lev(r)

Arguments

r

correlation coefficients

ar

auto-Regressive model parameters

sigma2

scale constant

rc

reflection coefficients

Description

This function resolves the Yule-Walker equations using Levinson's algorithm. Generally, it is used to estimate the coefficients of an autoregressive process.

Example

b=1; //numerator
a=[1 -0.7 0.8]; //denominator
x=[1 zeros(1,99)]; //input=impulse
data=filter(b,a,x); //real data
a2=lev(data); //modelized data
a2=a2/a2(1); //normalization
m_data=filter(1,a2,x);
// Compare real data and modelized data
plot(data,"color","blue","lineStyle","none","marker","d");
plot(m_data,"color","red","lineStyle","none","marker","d");
Report an issue
<< kalm Filters levin >>

Copyright (c) 2022-2024 (Dassault Systèmes)
Copyright (c) 2017-2022 (ESI Group)
Copyright (c) 2011-2017 (Scilab Enterprises)
Copyright (c) 1989-2012 (INRIA)
Copyright (c) 1989-2007 (ENPC)
with contributors
Last updated:
Mon Jan 03 14:23:25 CET 2022