Please note that the recommended version of Scilab is 2024.1.0. This page might be outdated.
See the recommended documentation of this function
ifftshift
inverse of fftshift
Syntax
y = ifftshift(x) y = ifftshift(x, along)
Arguments
- x, y
vectors, matrices or hypermatrices of same sizes and types.
- along
1 | "r" | 2 | "c" | 0<along<=ndims(x): dimension along which halves are switched.
Description
ifftshift(x)
swaps the left and right halves of the vector
x
.
For matrices, ifftshift(x)
swaps the first quadrant with the third,
and the second quadrant with the fourth.
If x
is a multidimensional array,
ifftshift(x)
swaps "half-spaces" of x
along each dimension, for all of them.
y = ifftshift(x,n)
makes the swap only along the
n
th dimension.
ifftshift() is designed in such a way that whatever is
x with even or/and odd sizes,
ifftshift(fftshift(x)) and fftshift(ifftshift(x))
are always equal to x . |
Examples
Example #1:
When the size of a vector (or of a dimension>1) is even, fftshift()
and
ifftshift()
are equivalent. It is no longer the case when a size
is odd:
even = [1 2 3 4 5 6]; odd = [1 2 3 4 5 6 7]; [fftshift(even) ; ifftshift(even)] [fftshift(odd) ; ifftshift(odd)] // Both are always reciprocal: ifftshift(fftshift(odd)) fftshift(ifftshift(odd))
--> even = [1 2 3 4 5 6]; --> odd = [1 2 3 4 5 6 7]; --> [fftshift(even) ; ifftshift(even)] ans = 4. 5. 6. 1. 2. 3. 4. 5. 6. 1. 2. 3. --> [fftshift(odd) ; ifftshift(odd)] ans = 5. 6. 7. 1. 2. 3. 4. 4. 5. 6. 7. 1. 2. 3. --> // Both are always reciprocal: --> ifftshift(fftshift(odd)) ans = 1. 2. 3. 4. 5. 6. 7. --> fftshift(ifftshift(odd)) ans = 1. 2. 3. 4. 5. 6. 7.
Example #2:
// Make a signal t = 0:0.1:1000; x = 3*sin(t) + 8*sin(3*t) + 0.5*sin(5*t) + 3*rand(t); // Compute the fft y = fft(x, -1); // Invert the result shift = fftshift(y); // Invert the inverted result invShift = ifftshift(shift); // Check that we recreated the original result and(y == invShift)
Example #3:
// Make a 2D image t = 0:0.1:30; x = 3*sin(t')*cos(2*t) + 8*sin(3*t')*sin(5*t) + .. 0.5*sin(5*t')*sin(5*t) + 3*rand(t')*rand(t); // Compute the fft y = fft(x,-1); // Invert the result shift = fftshift(y); // Invert the inverted result invShift = ifftshift(shift); // Check that we recreated the original result and(y == invShift)
See also
History
Version | Description |
6.0.2 | Option along added. |
Report an issue | ||
<< hilb | Transforms | bilt >> |