Please note that the recommended version of Scilab is 2026.0.0. This page might be outdated.
See the recommended documentation of this function
time_id
SISO least square identification
Syntax
[H [,err]]=time_id(n,u,y)
Arguments
- n
- order of transfer 
- u
- one of the following - u1
- a vector of inputs to the system 
- "impuls"
- if y is an impulse response 
- "step"
- if y is a step response. 
 
- y
- vector of response. 
- H
- rational function with degree n denominator and degree n-1 numerator if y(1)==0 or rational function with degree n denominator and numerator if y(1)<>0. 
- err
- ||y - impuls(H,npt)||^2, where- impuls(H,npt)are the- nptfirst coefficients of impulse response of- H
Description
Identification of discrete time response. If y is strictly
            proper (y(1)=0) then time_id computes the least square
            solution of the linear equation:  Den*y-Num*u=0 with the
            constraint  coeff(Den,n):=1. if y(1)~=0 then the algorithm
            first computes the proper part solution and then add  y(1) to the solution
Examples
z=poly(0,'z'); h=(1-2*z)/(z^2-0.5*z+5) rep=[0;ldiv(h('num'),h('den'),20)]; //impulse response H=time_id(2,'impuls',rep) // Same example with flts and u u=zeros(1,20);u(1)=1; rep=flts(u,tf2ss(h)); //impulse response H=time_id(2,u,rep) // step response u=ones(1,20); rep=flts(u,tf2ss(h)); //step response. H=time_id(2,'step',rep) H=time_id(3,u,rep) //with u as input and too high order required
See also
| Report an issue | ||
| << sorder | Identification | Analyse linéaire >> |