Scilab Website | Contribute with GitLab | Mailing list archives | ATOMS toolboxes
Scilab Online Help
6.0.1 - English

Change language to:
Français - 日本語 - Português - Русский

Please note that the recommended version of Scilab is 2024.1.0. This page might be outdated.
See the recommended documentation of this function

Scilab Help >> Control Systems - CACSD > Linear System Factorization > gtild

gtild

tilde operation

Syntax

Gt=gtild(G)
Gt=gtild(G,flag)

Arguments

G

either a polynomial or a linear system (syslin list) or a rational matrix

Gt

same as G

flag

character string: either 'c' or 'd' (optional parameter).

Description

If G is a polynomial matrix (or a polynomial), Gt=gtild(G,'c') returns the polynomial matrix Gt(s)=G(-s)'.

If G is a polynomial matrix (or a polynomial), Gt=gtild(G,'d') returns the polynomial matrix Gt=G(1/z)*z^n where n is the maximum degree of G.

For continuous-time systems represented in state-space by a syslin list, Gt = gtild(G,'c') returns a state-space representation of G(-s)' i.e the ABCD matrices of Gt are A',-C', B', D'. If G is improper (D= D(s)) the D matrix of Gt is D(-s)'.

For discrete-time systems represented in state-space by a syslin list, Gt = gtild(G,'d') returns a state-space representation of G(-1/z)' i.e the (possibly improper) state-space representation of -z*C*inv(z*A-B)*C + D(1/z).

For rational matrices, Gt = gtild(G,'c') returns the rational matrix Gt(s)=G(-s) and Gt = gtild(G,'d') returns the rational matrix Gt(z)= G(1/z)'.

The parameter flag is necessary when gtild is called with a polynomial argument.

Examples

//Continuous time
s=poly(0,'s');G=[s,s^3;2+s^3,s^2-5]
Gt=gtild(G,'c')
Gt-horner(G,-s)'   //continuous-time interpretation
Gt=gtild(G,'d');
Gt-horner(G,1/s)'*s^3  //discrete-time interpretation
G=ssrand(2,2,3);Gt=gtild(G);   //State-space (G is cont. time by default)
clean((horner(ss2tf(G),-s))'-ss2tf(Gt))   //Check

// Discrete-time
z=poly(0,'z');
Gss=ssrand(2,2,3);Gss('dt')='d'; //discrete-time
Gss(5)=[1,2;0,1];   //With a constant D matrix
G=ss2tf(Gss);Gt1=horner(G,1/z)';
Gt=gtild(Gss);
Gt2=clean(ss2tf(Gt)); clean(Gt1-Gt2)  //Check

//Improper systems
z=poly(0,'z');
Gss=ssrand(2,2,3);Gss(7)='d'; //discrete-time
Gss(5)=[z,z^2;1+z,3];    //D(z) is polynomial
G=ss2tf(Gss);Gt1=horner(G,1/z)';  //Calculation in transfer form
Gt=gtild(Gss);    //..in state-space
Gt2=clean(ss2tf(Gt));clean(Gt1-Gt2)  //Check

See also

  • syslin — linear system definition
  • horner — polynomial/rational evaluation
  • factors — numeric real factorization
Report an issue
<< fstabst Linear System Factorization lcf >>

Copyright (c) 2022-2024 (Dassault Systèmes)
Copyright (c) 2017-2022 (ESI Group)
Copyright (c) 2011-2017 (Scilab Enterprises)
Copyright (c) 1989-2012 (INRIA)
Copyright (c) 1989-2007 (ENPC)
with contributors
Last updated:
Mon Feb 12 19:26:48 CET 2018