Scilab Home page | Wiki | Bug tracker | Forge | Mailing list archives | ATOMS | File exchange
Please login or create an account
Change language to: English - Français - Português - 日本語 -
Справка Scilab >> Linear Algebra > Matrix Pencil > pencan

pencan

canonical form of matrix pencil

Syntax

[Q,M,i1]=pencan(Fs)
[Q,M,i1]=pencan(E,A)

Arguments

Fs

a regular pencil s*E-A

E,A

two real square matrices

Q,M

two non-singular real matrices

i1

integer

Description

Given the regular pencil Fs=s*E-A, pencan returns matrices Q and M such than M*(s*E-A)*Q is in "canonical" form.

M*E*Q is a block matrix

[I,0;
 0,N]

with N nilpotent and i1 = size of the I matrix above.

M*A*Q is a block matrix:

[Ar,0;
 0,I]

Examples

F=randpencil([],[1,2],[1,2,3],[]);
F=rand(6,6)*F*rand(6,6);
[Q,M,i1]=pencan(F);
W=clean(M*F*Q)
roots(det(W(1:i1,1:i1)))
det(W($-2:$,$-2:$))

See also

  • glever — inverse of matrix pencil
  • penlaur — Laurent coefficients of matrix pencil
  • rowshuff — shuffle algorithm
Scilab Enterprises
Copyright (c) 2011-2017 (Scilab Enterprises)
Copyright (c) 1989-2012 (INRIA)
Copyright (c) 1989-2007 (ENPC)
with contributors
Last updated:
Tue Feb 14 15:13:21 CET 2017