Scilab Home page | Wiki | Bug tracker | Forge | Mailing list archives | ATOMS | File exchange
Please login or create an account
Change language to: English - Français - Português - 日本語 -

Please note that the recommended version of Scilab is 6.1.0. This page might be outdated.
See the recommended documentation of this function

Справка Scilab >> Polynomials > lcmdiag

# lcmdiag

least common multiple diagonal factorization

### Syntax

```[N,D]=lcmdiag(H)
[N,D]=lcmdiag(H,flag)```

### Arguments

H

rational matrix

N

polynomial matrix

D

diagonal polynomial matrix

flag

character string: `'row'` or `'col'` (default)

### Description

`[N,D]=lcmdiag(H,'row')` computes a factorization `D*H=N`, i.e. `H=D^(-1)*N` where D is a diagonal matrix with D(k,k)=lcm of kth row of H('den').

`[N,D]=lcmdiag(H)` or `[N,D]=lcmdiag(H,'col)` returns `H=N*D^(-1)` with diagonal D and D(k,k)=lcm of kth col of H('den')

### Examples

```s=poly(0,'s');
H=[1/s,(s+2)/s/(s+1)^2;1/(s^2*(s+2)),2/(s+2)];
[N,D]=lcmdiag(H);
N/D-H```

### See also

• lcm — наименьшее общее кратное (НОК)
• gcd — наибольший общий делитель (НОД)
• bezout — Bezout equation for polynomials or integers

### Comments

Add a comment:
Please login to comment this page.

 Report an issue << invr Polynomials ldiv >>

 Scilab EnterprisesCopyright (c) 2011-2017 (Scilab Enterprises)Copyright (c) 1989-2012 (INRIA)Copyright (c) 1989-2007 (ENPC)with contributors Last updated:Tue Feb 14 15:13:23 CET 2017