Scilab Website | Contribute with GitLab | Mailing list archives | ATOMS toolboxes
Scilab Online Help
5.5.2 - English

Change language to:
Français - 日本語 - Português - Русский

Please note that the recommended version of Scilab is 2024.1.0. This page might be outdated.
See the recommended documentation of this function

Scilab Help >> Linear Algebra > Matrix Pencil > glever

glever

inverse of matrix pencil

Calling Sequence

[Bfs,Bis,chis]=glever(E,A [,s])

Arguments

E, A

two real square matrices of same dimensions

s

character string (default value 's')

Bfs,Bis

two polynomial matrices

chis

polynomial

Description

Computation of

(s*E-A)^-1

by generalized Leverrier's algorithm for a matrix pencil.

(s*E-A)^-1 = (Bfs/chis) - Bis.

chis = characteristic polynomial (up to a multiplicative constant).

Bfs = numerator polynomial matrix.

Bis = polynomial matrix ( - expansion of (s*E-A)^-1 at infinity).

Note the - sign before Bis.

Caution

This function uses cleanp to simplify Bfs,Bis and chis.

Examples

s=%s;F=[-1,s,0,0;0,-1,0,0;0,0,s-2,0;0,0,0,s-1];
[Bfs,Bis,chis]=glever(F)
inv(F)-((Bfs/chis) - Bis)

See Also

  • rowshuff — shuffle algorithm
  • det — determinant
  • invr — inversion of (rational) matrix
  • coffg — inverse of polynomial matrix
  • pencan — canonical form of matrix pencil
  • penlaur — Laurent coefficients of matrix pencil
Report an issue
<< fstair Matrix Pencil kroneck >>

Copyright (c) 2022-2024 (Dassault Systèmes)
Copyright (c) 2017-2022 (ESI Group)
Copyright (c) 2011-2017 (Scilab Enterprises)
Copyright (c) 1989-2012 (INRIA)
Copyright (c) 1989-2007 (ENPC)
with contributors
Last updated:
Wed Apr 01 10:13:53 CEST 2015