Scilab Home page | Wiki | Bug tracker | Forge | Mailing list archives | ATOMS | File exchange
Please login or create an account
Change language to: English - Português - Русский - 日本語

Please note that the recommended version of Scilab is 6.0.0. This page might be outdated.
However, this page did not exist in the previous stable version.

Aide de Scilab >> Optimisation et Simulation > derivative


approximate derivatives of a function. This function is obsolete. Please use the numderivative function instead.

Calling Sequence

[J [,H]] = derivative(F,x [,h ,order ,H_form ,Q])



a Scilab function F: R^n --> R^m or a list(F,p1,...,pk), where F is a scilab function in the form y=F(x,p1,...,pk), p1, ..., pk being any scilab objects (matrices, lists,...).


real column vector of dimension n.


(optional) real, the stepsize used in the finite difference approximations.


(optional) integer, the order of the finite difference formula used to approximate the derivatives (order = 1,2 or 4, default is order=2 ).


(optional) string, the form in which the Hessian will be returned. Possible forms are:


H is a m x (n^2) matrix ; in this form, the k-th row of H corresponds to the Hessian of the k-th component of F, given as the following row vector :

((grad(F_k) being a row vector).

H_form='blockmat' :

H is a (mxn) x n block matrix : the classic Hessian matrices (of each component of F) are stacked by row (H = [H1 ; H2 ; ... ; Hm] in scilab syntax).

H_form='hypermat' :

H is a n x n matrix for m=1, and a n x n x m hypermatrix otherwise. H(:,:,k) is the classic Hessian matrix of the k-th component of F.


(optional) real matrix, orthogonal (default is eye(n,n)). Q is added to have the possibility to remove the arbitrariness of using the canonical basis to approximate the derivatives of a function and it should be an orthogonal matrix. It is not mandatory but better to recover the derivative as you need the inverse matrix (and so simply Q' instead of inv(Q)).


approximated Jacobian


approximated Hessian


Numerical approximation of the first and second derivatives of a function F: R^n --> R^m at the point x. The Jacobian is computed by approximating the directional derivatives of the components of F in the direction of the columns of Q. (For m=1, v=Q(:,k) : grad(F(x))*v = Dv(F(x)).) The second derivatives are computed by composition of first order derivatives. If H is given in its default form the Taylor series of F(x) up to terms of second order is given by :

(([J,H]=derivative(F,x,H_form='default'), J=J(x), H=H(x).)


If the problem is correctly scaled, increasing the accuracy reduces the total error but requires more function evaluations. The following list presents the number of function evaluations required to compute the Jacobian depending on the order of the formula and the dimension of x, denoted by n:

  • order=1, the number of function evaluations is n+1,

  • order=2, the number of function evaluations is 2n,

  • order=4, the number of function evaluations is 4n.

Computing the Hessian matrix requires square the number of function evaluations, as detailed in the following list.

  • order=1, the number of function evaluations is (n+1)^2,

  • order=2, the number of function evaluations is 4n^2,

  • order=4, the number of function evaluations is 16n^2.


The step size h must be small to get a low error but if it is too small floating point errors will dominate by cancellation. As a rule of thumb, do not change the default step size. To work around numerical difficulties one may also change the order and/or choose different orthogonal matrices Q (the default is eye(n,n)), especially if the approximate derivatives are used in optimization routines. All the optional arguments may also be passed as named arguments, so that one can use calls in the form :

derivative(F, x, H_form = "hypermat")
derivative(F, x, order = 4) etc.


function y=F(x)
y=[sin(x(1)*x(2))+exp(x(2)*x(3)+x(1)) ; sum(x.^3)];

function y=G(x, p)
y=[sin(x(1)*x(2)*p)+exp(x(2)*x(3)+x(1)) ; sum(x.^3)];


// form an orthogonal matrix :
Q = qr(rand(n,n))
// Test order 1, 2 and 4 formulas.
for i=[1,2,4]
mprintf("order= %d \n",i);


// Taylor series example:
F(x+dx)-F(x)-J*dx-1/2*H*(dx .*. dx)

// A trivial example
function y=f(x, A, p, w)
// with Jacobian and Hessian given by J(x)=x'*(A+A')+p', and H(x)=A+A'.
A = rand(3,3);
p = rand(3,1);
w = 1;
x = rand(3,1);

// Since f(x) is quadratic in x, approximate derivatives of order=2 or 4 by finite
// differences should be exact for all h~=0. The apparent errors are caused by
// cancellation in the floating point operations, so a "big" h is chosen.
// Comparison with the exact matrices:
Je = x'*(A+A')+p'
He = A+A'
clean(Je - J)
clean(He - H)

Accuracy issues

The derivative function uses the same step h whatever the direction and whatever the norm of x. This may lead to a poor scaling with respect to x. An accurate scaling of the step is not possible without many evaluations of the function. Still, the user has the possibility to compare the results produced by the derivative and the numdiff functions. Indeed, the numdiff function scales the step depending on the absolute value of x. This scaling may produce more accurate results, especially if the magnitude of x is large.

In the following Scilab script, we compute the derivative of an univariate quadratic function. The exact derivative can be computed analytically and the relative error is computed. In this rather extreme case, the derivative function produces no significant digits, while the numdiff function produces 6 significant digits.

// Difference between derivative and numdiff when x is large
function y=myfunction(x)
y = x*x;
x = 1.e100;
fe = 2.0 * x;
fp = derivative(myfunction,x);
e = abs(fp-fe)/fe;
mprintf("Relative error with derivative: %e\n",e)
fp = numdiff(myfunction,x);
e = abs(fp-fe)/fe;
mprintf("Relative error with numdiff: %e\n",e)

The previous script produces the following output.

Relative error with derivative: 1.000000e+000
Relative error with numdiff: 7.140672e-006

In a practical situation, we may not know what is the correct numerical derivative. Still, we are warned that the numerical derivatives should be used with caution in this specific case.

See Also

  • interp — cubic spline evaluation function
  • interp2d — bicubic spline (2d) evaluation function
  • splin — cubic spline interpolation
  • eval_cshep2d — bidimensional cubic shepard interpolation evaluation
  • diff — Difference and discrete derivative
  • numdiff — numerical gradient estimation at one point. This function is obsolete. Please use the numderivative function instead.
  • derivat — dérivée d'une matrice de polynômes
  • numderivative — approximation des dérivées d'une fonction (matrices jacobienne ou hessienne)


5.5.0 Tagged as obsolete. Will be removed in Scilab 6.0.0.


We now discuss how a script using the derivative function can be updated to use the numderivative function.

Consider the function:

function y=F(x)
f1 = sin(x(1)*x(2)) + exp(x(2)*x(3)+x(1))
f2 = sum(x.^3)
y = [f1 ; f2];

and the point:

x = [1 ; 2 ; 3];

Therefore, the statement:

[J, H] = derivative(F, x)

can be replaced with

[J, H] = numderivative(F, x)

The statement:

[J, H] = derivative(F, x, order=4)

can be replaced by:

[J, H] = numderivative(F, x, [], 4)

The statement:

[J, H] = derivative(F, x, H_form="blockmat")

can be replaced by:

[J, H] = numderivative(F, x, [], [], "blockmat")

We emphasize that numderivative and derivative do not use the same strategy for the choice of the default step h. Hence, in general, the functions numderivative and derivative will not produce exactly the same outputs. Still, in general, we expect that numderivative is more accurate. It is not easy to get the same step in numderivative as in derivative, because the choice of the step depends on the degree of differenciation (Jacobian or Hessian) and the order of the formula.

Scilab Enterprises
Copyright (c) 2011-2017 (Scilab Enterprises)
Copyright (c) 1989-2012 (INRIA)
Copyright (c) 1989-2007 (ENPC)
with contributors
Last updated:
Thu Oct 02 13:54:33 CEST 2014