Scilab Website | Contribute with GitLab | Mailing list archives | ATOMS toolboxes
Scilab Online Help
5.5.0 - Français

Change language to:
English - 日本語 - Português - Русский

Please note that the recommended version of Scilab is 2024.1.0. This page might be outdated.
See the recommended documentation of this function

Aide de Scilab >> Traitement du Signal > transforms > hilb

hilb

FIR approximation to a Hilbert transform filter

Calling Sequence

xh=hilb(n [,wtype [,par]])

Arguments

n

odd integer : number of points in filter

wtype

string : window type ('re','tr','hn','hm','kr','ch') (default ='re')

par

window parameter for wtype='kr' or 'ch' default par=[0 0] see the function window for more help

xh

Hilbert transform

Description

Returns the first n points of an FIR approximation to a Hilbert transform filter centred around the origin.

The FIR filter is designed by appropraitely windowing the ideal impulse response h(n)=(2/(n*pi))*(sin(n*pi/2))^2 for n not equal 0 and h(0)=0.

An approximation to an analytic signal generator can be built by designing an FIR (Finite Impulse Response) filter approximation to the Hilbert transform operator. The analytic signal can then be computed by adding the appropriately time-shifted real signal to the imaginary part generated by the Hilbert filter.

References

http://ieeexplore.ieee.org/iel4/78/7823/00330385.pdf?tp=&arnumber=330385&isnumber=7823

A. Reilly, G. Frazer, and B. Boashash, "Analytic signal generation Tips and traps", IEEE Trans. Signal Processing, vol. 42, pp.3241-3245, Nov. 1994.

See Also

  • window — compute symmetric window of various type
  • hilbert — Discrete-time analytic signal computation of a real signal using Hilbert transform

Examples

plot(hilb(51))
Report an issue
<< hank transforms mfft >>

Copyright (c) 2022-2024 (Dassault Systèmes)
Copyright (c) 2017-2022 (ESI Group)
Copyright (c) 2011-2017 (Scilab Enterprises)
Copyright (c) 1989-2012 (INRIA)
Copyright (c) 1989-2007 (ENPC)
with contributors
Last updated:
Fri Apr 11 14:14:53 CEST 2014