- Ajuda Scilab
- CACSD
- format_representation
- Plot and display
- plzr
- pol2des
- routh_t
- ssprint
- syslin
- abinv
- arhnk
- arl2
- arma
- arma2p
- arma2ss
- armac
- armax
- armax1
- arsimul
- augment
- balreal
- bilin
- bstap
- cainv
- calfrq
- canon
- ccontrg
- cls2dls
- colinout
- colregul
- cont_mat
- contr
- contrss
- copfac
- csim
- ctr_gram
- damp
- dcf
- ddp
- dhinf
- dhnorm
- dscr
- dsimul
- dt_ility
- dtsi
- equil
- equil1
- feedback
- findABCD
- findAC
- findBD
- findBDK
- findR
- findx0BD
- flts
- fourplan
- freq
- freson
- fspec
- fspecg
- fstabst
- g_margin
- gamitg
- gcare
- gfare
- gfrancis
- gtild
- h2norm
- h_cl
- h_inf
- h_inf_st
- h_norm
- hankelsv
- hinf
- imrep2ss
- inistate
- invsyslin
- kpure
- krac2
- lcf
- leqr
- lft
- lin
- linf
- linfn
- linmeq
- lqe
- lqg
- lqg2stan
- lqg_ltr
- lqr
- ltitr
- macglov
- minreal
- minss
- mucomp
- narsimul
- nehari
- noisegen
- nyquistfrequencybounds
- obs_gram
- obscont
- observer
- obsv_mat
- obsvss
- p_margin
- parrot
- pfss
- phasemag
- ppol
- prbs_a
- projsl
- reglin
- repfreq
- ric_desc
- ricc
- riccati
- rowinout
- rowregul
- rtitr
- sensi
- sident
- sorder
- specfact
- st_ility
- stabil
- sysfact
- syssize
- time_id
- trzeros
- ui_observer
- unobs
- zeropen
Please note that the recommended version of Scilab is 2025.0.0. This page might be outdated.
See the recommended documentation of this function
findR
Preprocessor for estimating the matrices of a linear time-invariant dynamical system
Calling Sequence
[R,N [,SVAL,RCND]] = findR(S,Y,U,METH,ALG,JOBD,TOL,PRINTW) [R,N] = findR(S,Y)
Arguments
- S
the number of block rows in the block-Hankel matrices.
- Y
- U
- METH
an option for the method to use:
- 1
MOESP method with past inputs and outputs;
- 2
N4SI15 0 1 1 1000D method.
Default: METH = 1.
- ALG
an option for the algorithm to compute the triangular factor of the concatenated block-Hankel matrices built from the input-output data:
- 1
Cholesky algorithm on the correlation matrix;
- 2
fast QR algorithm;
- 3
standard QR algorithm.
Default: ALG = 1.
- JOBD
an option to specify if the matrices B and D should later be computed using the MOESP approach:
- =
1 : the matrices B and D should later be computed using the MOESP approach;
- =
2 : the matrices B and D should not be computed using the MOESP approach.
Default: JOBD = 2. This parameter is not relevant for METH = 2.
- TOL
a vector of length 2 containing tolerances:
- TOL
(1) is the tolerance for estimating the rank of matrices. If TOL(1) > 0, the given value of TOL(1) is used as a lower bound for the reciprocal condition number.
Default: TOL(1) = prod(size(matrix))*epsilon_machine where epsilon_machine is the relative machine precision.
- TOL
(2) is the tolerance for estimating the system order. If TOL(2) >= 0, the estimate is indicated by the index of the last singular value greater than or equal to TOL(2). (Singular values less than TOL(2) are considered as zero.)
When TOL(2) = 0, then S*epsilon_machine*sval(1) is used instead TOL(2), where sval(1) is the maximal singular value. When TOL(2) < 0, the estimate is indicated by the index of the singular value that has the largest logarithmic gap to its successor. Default: TOL(2) = -1.
- PRINTW
a switch for printing the warning messages.
- =
1: print warning messages;
- =
0: do not print warning messages.
Default: PRINTW = 0.
- R
- N
the order of the discrete-time realization
- SVAL
singular values SVAL, used for estimating the order.
- RCND
vector of length 2 containing the reciprocal condition numbers of the matrices involved in rank decisions or least squares solutions.
Description
findR Preprocesses the input-output data for estimating the matrices of a linear time-invariant dynamical system, using Cholesky or (fast) QR factorization and subspace identification techniques (MOESP or N4SID), and estimates the system order.
[R,N] = findR(S,Y,U,METH,ALG,JOBD,TOL,PRINTW) returns the processed upper triangular factor R of the concatenated block-Hankel matrices built from the input-output data, and the order N of a discrete-time realization. The model structure is:
x(k+1) = Ax(k) + Bu(k) + w(k), k >= 1, y(k) = Cx(k) + Du(k) + e(k).
The vectors y(k) and u(k) are transposes of the k-th rows of Y and U, respectively.
[R,N,SVAL,RCND] = findR(S,Y,U,METH,ALG,JOBD,TOL,PRINTW) also returns the singular values SVAL, used for estimating the order, as well as, if meth = 2, the vector RCND of length 2 containing the reciprocal condition numbers of the matrices involved in rank decisions or least squares solutions.
[R,N] = findR(S,Y) assumes U = [] and default values for the remaining input arguments.
Examples
//generate data from a given linear system A = [ 0.5, 0.1,-0.1, 0.2; 0.1, 0, -0.1,-0.1; -0.4,-0.6,-0.7,-0.1; 0.8, 0, -0.6,-0.6]; B = [0.8;0.1;1;-1]; C = [1 2 -1 0]; SYS=syslin(0.1,A,B,C); U=(ones(1,1000)+rand(1,1000,'normal')); Y=(flts(U,SYS)+0.5*rand(1,1000,'normal')); // Compute R [R,N,SVAL] = findR(15,Y',U'); SVAL N
See Also
- findABCD — discrete-time system subspace identification
- findAC — discrete-time system subspace identification
- findBD — initial state and system matrices B and D of a discrete-time system
- findBDK — Kalman gain and B D system matrices of a discrete-time system
- sorder — computing the order of a discrete-time system
- sident — discrete-time state-space realization and Kalman gain
Report an issue | ||
<< findBDK | CACSD | findx0BD >> |