Change language to:
English - Français - Português - Русский

# fit_dat

Parameter identification based on measured data This function is obsolete. Please use datafit.

### Calling Sequence

`[p,err]=fit_dat(G,p0,Z [,W] [,pmin,pmax] [,DG])`

### Arguments

G

Scilab function (e=G(p,z), e: nex1, p: npx1, z: nzx1)

p0

initial guess (size npx1)

Z

matrix [z_1,z_2,...z_n] where z_i (nzx1) is the ith measurement

W

weighting matrix of size nexne (optional; default 1)

pmin

lower bound on p (optional; size npx1)

pmax

upper bound on p (optional; size npx1)

DG

partial of G wrt p (optional; S=DG(p,z), S: nexnp)

### Description

`fit_dat` is used for fitting data to a model. For a given function G(p,z), this function finds the best vector of parameters p for approximating G(p,z_i)=0 for a set of measurement vectors z_i. Vector p is found by minimizing `G(p,z_1)'WG(p,z_1)+G(p,z_2)'WG(p,z_2)+...+G(p,z_n)'WG(p,z_n)`

### Examples

```function y=FF(x)
y=a*(x-b)+c*x.*x;
endfunction
X=[];
Y=[];
a=34;
b=12;
c=14;
for x=0:.1:3
Y=[Y,FF(x)+100*(rand()-.5)];
X=[X,x];
end
Z=[Y;X];
function e=G(p, z)
a=p(1)
b=p(2)
c=p(3)
y=z(1)
x=z(2)
e=y-FF(x)
endfunction

[p,err]=fit_dat(G,[3;5;10],Z)

xset('window',0)
clf();
plot2d(X',Y',-1)
plot2d(X',FF(X)',5,'002')
a=p(1);
b=p(2);
c=p(3);
plot2d(X',FF(X)',12,'002')

a=34;
b=12;
c=14;
function s=DG(p, z)
y=z(1),
x=z(2),
s=-[x-p(2),-p(1),x*x]
endfunction

[p,err]=fit_dat(G,[3;5;10],Z,DG)

xset('window',1)
clf();
plot2d(X',Y',-1)
plot2d(X',FF(X)',5,'002')
a=p(1);
b=p(2);
c=p(3);
plot2d(X',FF(X)',12,'002')```