Scilab Website | Contribute with GitLab | Mailing list archives | ATOMS toolboxes
Scilab Online Help
5.4.0 - Русский

Change language to:
English - Français - 日本語 - Português -

Please note that the recommended version of Scilab is 2025.0.0. This page might be outdated.
See the recommended documentation of this function

Scilab help >> Sparse Matrix > Linear Equations (Iterative Solvers) > qmr

qmr

quasi minimal resiqual method with preconditioning

Calling Sequence

[x,flag,err,iter,res] = qmr(A,Ap,b,x0,M1,M1p,M2,M2p,maxi,tol)
[x,flag,err,iter,res] = qmr(A,b,x0,M1,M2,maxi,tol)

Arguments

A

matrix of size n-by-n or function.

  • matrix.If A is a matrix, it can be dense or sparse

  • function.If A is a function which returns A*x, it must have the following header :

    function y=A(x)

    If A is a function which returns A*x or A'*x depending t. If t = "notransp", the function returns A*x. If t = "transp", the function returns A'*x. It must have the following header :

    function y=A(x, t)
Ap

function returning A'*x. It must have the followinf header :

function y=Ap(x)
b

right hand side vector

x0

initial guess vector (default: zeros(n,1))

M1

left preconditioner : matrix or function (In the first case, default: eye(n,n)). If M1 is a function, she returns either,

  • only M1*x

  • or

  • M1*x or M1'*x depending t.

M1p

must only be provided when M1 is a function returning M1*x. In this case M1p is the function which returns M1'*x.

M2

right preconditioner : matrix or function (In the first case, default: eye(n,n)). If M2 is a function, she returns either

  • only M2*x

  • or

  • M2*x or M2'*x depending t.

M2p

must only be provided when M2 is a function returning M2*x. In this case M2p is the function which returns M2'*x

maxi

maximum number of iterations (default: n)

tol

error tolerance (default: 1000*%eps)

x

solution vector

flag
0 =

gmres converged to the desired tolerance within maxi iterations

1 =

no convergence given maxi

res

residual vector

err

final residual norm

iter

number of iterations performed

Description

Solves the linear system Ax=b using the Quasi Minimal Residual Method with preconditioning.

Examples

// If A is a matrix
A=[ 94  0   0   0    0   28  0   0   32  0  
    0   59  13  5    0   0   0   10  0   0  
    0   13  72  34   2   0   0   0   0   65 
    0   5   34  114  0   0   0   0   0   55 
    0   0   2   0    70  0   28  32  12  0  
    28  0   0   0    0   87  20  0   33  0  
    0   0   0   0    28  20  71  39  0   0  
    0   10  0   0    32  0   39  46  8   0  
    32  0   0   0    12  33  0   8   82  11 
    0   0   65  55   0   0   0   0   11  100];
b=ones(10,1);
[x,flag,err,iter,res] = qmr(A, b)

[x,flag,err,iter,res] = qmr(A, b, zeros(10,1), eye(10,10), eye(10,10), 10, 1d-12)

// If A is a function
function y=Atimesx(x, t)
A=[ 94  0   0   0    0   28  0   0   32  0  
    0   59  13  5    0   0   0   10  0   0  
    0   13  72  34   2   0   0   0   0   65 
    0   5   34  114  0   0   0   0   0   55 
    0   0   2   0    70  0   28  32  12  0  
    28  0   0   0    0   87  20  0   33  0  
    0   0   0   0    28  20  71  39  0   0  
    0   10  0   0    32  0   39  46  8   0  
    32  0   0   0    12  33  0   8   82  11 
    0   0   65  55   0   0   0   0   11  100];
 if (t == 'notransp') then
       y = A*x;
   elseif (t ==  'transp') then
       y = A'*x;
   end
endfunction
 
 [x,flag,err,iter,res] = qmr(Atimesx, b)
 
 [x,flag,err,iter,res] = qmr(Atimesx, b, zeros(10,1), eye(10,10), eye(10,10), 10, 1d-12)
 
 // OR
 
 function y=funA(x)
A = [ 94  0   0   0    0   28  0   0   32  0  
    0   59  13  5    0   0   0   10  0   0  
    0   13  72  34   2   0   0   0   0   65 
    0   5   34  114  0   0   0   0   0   55 
    0   0   2   0    70  0   28  32  12  0  
    28  0   0   0    0   87  20  0   33  0  
    0   0   0   0    28  20  71  39  0   0  
    0   10  0   0    32  0   39  46  8   0  
    32  0   0   0    12  33  0   8   82  11 
    0   0   65  55   0   0   0   0   11  100];
 y = A*x
endfunction

 function y=funAp(x)
A = [ 94  0   0   0    0   28  0   0   32  0  
    0   59  13  5    0   0   0   10  0   0  
    0   13  72  34   2   0   0   0   0   65 
    0   5   34  114  0   0   0   0   0   55 
    0   0   2   0    70  0   28  32  12  0  
    28  0   0   0    0   87  20  0   33  0  
    0   0   0   0    28  20  71  39  0   0  
    0   10  0   0    32  0   39  46  8   0  
    32  0   0   0    12  33  0   8   82  11 
    0   0   65  55   0   0   0   0   11  100];
 y = A'*x
endfunction
 
 [x,flag,err,iter,res] = qmr(funA, funAp, b)
 
 [x,flag,err,iter,res] = qmr(funA, funAp, b, zeros(10,1), eye(10,10), eye(10,10), 10, 1d-12)
 
 // If A is a matrix, M1 and M2 are functions
 function y=M1timesx(x, t)
 M1 = eye(10,10);
   if(t=="notransp") then
       y = M1*x;
   elseif (t=="transp") then
       y = M1'*x;
   end
endfunction

function y=M2timesx(x, t)
 M2 = eye(10,10);
   if(t=="notransp") then
       y = M2*x;
   elseif (t=="transp") then
       y = M2'*x;
   end
endfunction

[x,flag,err,iter,res] = qmr(A, b, zeros(10,1), M1timesx, M2timesx, 10, 1d-12)

// OR

function y=funM1(x)
M1 = eye(10,10);
y = M1*x;
endfunction

function y=funM1p(x)
M1 = eye(10,10);
y = M1'*x;
endfunction

function y=funM2(x)
M2 = eye(10,10);
y = M2*x;
endfunction

function y=funM2p(x)
M2 = eye(10,10);
y = M2'*x;
endfunction

[x,flag,err,iter,res] = qmr(A, b, zeros(10,1), funM1, funM1p, funM2, funM2p, 10, 1d-12)

// If A, M1, M2 are functions
[x,flag,err,iter,res] = qmr(funA, funAp, b, zeros(10,1), funM1, funM1p, funM2, funM2p, 10, 1d-12)
[x,flag,err,iter,res] = qmr(Atimesx, b, zeros(10,1), M1timesx, M2timesx, 10, 1d-12)

See Also

  • gmres — Generalized Minimum RESidual method
  • pcg — precondioned conjugate gradient

History

ВерсияОписание
5.4.0 Calling qmr(A, Ap) is deprecated. qmr(A) should be used instead. The following function is an example :
function y=A(x, t)
Amat = eye(2,2);
if ( t== "notransp") then
y = Amat*x;
elseif (t == "transp") then
y = Amat'*x;
end
endfunction
Report an issue
<< pcg Linear Equations (Iterative Solvers) Sparse Matrix Manipulation >>

Copyright (c) 2022-2024 (Dassault Systèmes)
Copyright (c) 2017-2022 (ESI Group)
Copyright (c) 2011-2017 (Scilab Enterprises)
Copyright (c) 1989-2012 (INRIA)
Copyright (c) 1989-2007 (ENPC)
with contributors
Last updated:
Mon Oct 01 17:41:08 CEST 2012