Scilab Website | Contribute with GitLab | Mailing list archives | ATOMS toolboxes
Scilab Online Help
5.3.3 - Português

Change language to:
English - Français - 日本語 -

Please note that the recommended version of Scilab is 2025.0.0. This page might be outdated.
However, this page did not exist in the previous stable version.

Ajuda Scilab >> Interfaces com UMFPACK (sparse) > rafiter

rafiter

(obsolete) iterative refinement for a s.p.d. linear system

Calling Sequence

[xn, rn] = rafiter(A, C_ptr, b, x0, [, nb_iter, verb])

Arguments

A

a real symmetric positive definite sparse matrix

C_ptr

a pointer to a Cholesky factorization (got with taucs_chfact)

b

column vector (r.h.s of the linear system) but "matrix" (multiple r.h.s.) are allowed.

x0

first solution obtained with taucs_chsolve(C_ptr, b)

nb_iter

(optional) number of raffinement iterations (default 2)

verb

(optional) boolean, must be %t for displaying the intermediary results, and %f (default) if you do not want.

xn

new refined solution

rn

residual (A*xn - b)

Description

This function is somewhat obsolete, use x = taucs_chsolve(C_ptr,b,A) (see taucs_chsolve) which do one iterative refinement step.

To use if you want to improve a little the solution got with taucs_chsolve. Note that with verb=%t the displayed internal steps are essentially meaningful in the case where b is a column vector.

Caution

Currently there is no verification for the input parameters !

Examples

[A] = ReadHBSparse(SCI+"/modules/umfpack/examples/bcsstk24.rsa");
C_ptr = taucs_chfact(A);
b = rand(size(A,1),1);
x0 = taucs_chsolve(C_ptr, b);
norm(A*x0 - b)
[xn, rn] = rafiter(A, C_ptr, b, x0, verb=%t);
norm(A*xn - b)
taucs_chdel(C_ptr)

See Also

  • taucs_chsolve — solve a linear sparse (s.p.d.) system given the Cholesky factors
  • taucs_chfact — cholesky factorisation of a sparse s.p.d. matrix

Authors

Bruno Pincon <Bruno.Pincon@iecn.u-nancy.fr>

<< condestsp Interfaces com UMFPACK (sparse) res_with_prec >>

Copyright (c) 2022-2024 (Dassault Systèmes)
Copyright (c) 2017-2022 (ESI Group)
Copyright (c) 2011-2017 (Scilab Enterprises)
Copyright (c) 1989-2012 (INRIA)
Copyright (c) 1989-2007 (ENPC)
with contributors
Last updated:
Wed Oct 05 12:11:45 CEST 2011