Change language to:
Français - 日本語 - Português

See the recommended documentation of this function

Scilab help >> CACSD > gtild

gtild

tilde operation

Calling Sequence

```Gt=gtild(G)
Gt=gtild(G,flag)```

Arguments

G

either a polynomial or a linear system (`syslin` list) or a rational matrix

Gt

same as G

flag

character string: either `'c'` or `'d'` (optional parameter).

Description

If `G` is a polynomial matrix (or a polynomial), `Gt=gtild(G,'c')` returns the polynomial matrix `Gt(s)=G(-s)'`.

If `G` is a polynomial matrix (or a polynomial), `Gt=gtild(G,'d')` returns the polynomial matrix `Gt=G(1/z)*z^n` where n is the maximum degree of `G`.

For continuous-time systems represented in state-space by a `syslin` list, `Gt = gtild(G,'c')` returns a state-space representation of `G(-s)'` i.e the `ABCD` matrices of `Gt` are `A',-C', B', D'`. If `G` is improper (`D= D(s)`) the `D` matrix of `Gt` is `D(-s)'`.

For discrete-time systems represented in state-space by a `syslin` list, `Gt = gtild(G,'d')` returns a state-space representation of `G(-1/z)'` i.e the (possibly improper) state-space representation of `-z*C*inv(z*A-B)*C + D(1/z)`.

For rational matrices, `Gt = gtild(G,'c')` returns the rational matrix `Gt(s)=G(-s)` and `Gt = gtild(G,'d')` returns the rational matrix `Gt(z)= G(1/z)'`.

The parameter `flag` is necessary when `gtild` is called with a polynomial argument.

Examples

```//Continuous time
s=poly(0,'s');G=[s,s^3;2+s^3,s^2-5]
Gt=gtild(G,'c')
Gt-horner(G,-s)'   //continuous-time interpretation
Gt=gtild(G,'d');
Gt-horner(G,1/s)'*s^3  //discrete-time interpretation
G=ssrand(2,2,3);Gt=gtild(G);   //State-space (G is cont. time by default)
clean((horner(ss2tf(G),-s))'-ss2tf(Gt))   //Check

// Discrete-time
z=poly(0,'z');
Gss=ssrand(2,2,3);Gss('dt')='d'; //discrete-time
Gss(5)=[1,2;0,1];   //With a constant D matrix
G=ss2tf(Gss);Gt1=horner(G,1/z)';
Gt=gtild(Gss);
Gt2=clean(ss2tf(Gt)); clean(Gt1-Gt2)  //Check

//Improper systems
z=poly(0,'z');
Gss=ssrand(2,2,3);Gss(7)='d'; //discrete-time
Gss(5)=[z,z^2;1+z,3];    //D(z) is polynomial
G=ss2tf(Gss);Gt1=horner(G,1/z)';  //Calculation in transfer form
Gt=gtild(Gss);    //..in state-space
Gt2=clean(ss2tf(Gt));clean(Gt1-Gt2)  //Check```