Scilab 5.3.3
Please note that the recommended version of Scilab is 2025.0.0. This page might be outdated.
See the recommended documentation of this function
binomial
binomial distribution probabilities
Calling Sequence
pr=binomial(p,n)
Arguments
- pr
row vector with n+1 components
- p
real number in [0,1]
- n
an integer >= 1
Description
pr=binomial(p,n)
returns the binomial probability
vector, i.e. pr(k+1)
is the probability of
k
success in n
independent
Bernouilli trials with probability of success p
. In
other words : pr(k+1) = probability(X=k)
, with X a
random variable following the B(n,p) distribution, and numerically
:
Examples
// first example n=10;p=0.3; clf(); plot2d3(0:n,binomial(p,n)); // second example n=50;p=0.4; mea=n*p; sigma=sqrt(n*p*(1-p)); x=( (0:n)-mea )/sigma; clf() plot2d(x, sigma*binomial(p,n)); deff('y=Gauss(x)','y=1/sqrt(2*%pi)*exp(-(x.^2)/2)') plot2d(x, Gauss(x), style=2); // by binomial formula (Caution if big n) function pr=binomial2(p, n) x=poly(0,'x');pr=coeff((1-p+x)^n).*horner(x^(0:n),p); endfunction p=1/3;n=5; binomial(p,n)-binomial2(p,n) // by Gamma function: gamma(n+1)=n! (Caution if big n) p=1/3;n=5; Cnks=gamma(n+1)./(gamma(1:n+1).*gamma(n+1:-1:1)); x=poly(0,'x'); pr=Cnks.*horner(x.^(0:n).*(1-x)^(n:-1:0),p); pr-binomial(p,n)
See Also
<< Discrete mathematics | Discrete mathematics | factor >> |