Please note that the recommended version of Scilab is 2026.0.0. This page might be outdated.
See the recommended documentation of this function
dae
Differential algebraic equations solver
Calling Sequence
y=dae(initial,t0,t,res) [y [,hd]]=dae(initial,t0,t [,rtol, [atol]],res [,jac] [,hd]) [y,rd]=dae("root",initial,t0,t,res,ng,surface) [y ,rd [,hd]]=dae("root",initial,t0,t [,rtol, [atol]],res [,jac], ng, surface [,hd])
Arguments
- initial
- a column vector. It may be equal to - x0or- [x0;xdot0]. Where- x0is the state value at initial time- t0and- ydot0is the initial state derivative value or an estimation of it (see below).
- t0
- a real number, the initial time. 
- t
- real scalar or vector. Gives instants for which you want the solution. Note that you can get solution at each dae's step point by setting - %DAEOPTIONS(2)=1.
- rtol
- a real scalar or a column vector of same size as - x0.- Therelative error tolerance of solution. If- rtolis a vector the tolerances are specified for each component of- the state.
- atol
- a real scalar or a column vector of same size as - x0.- Theabsolute error tolerance of solution. If- atolis a vector the tolerances are specified for each component of- the state.
- res
- an external. Computes the value of - g(t,y,ydot). It may be- a Scilab function
- In this case, Its calling sequence must be - [r,ires]=res(t,x,xdot)and- resmust return the residue- r=g(t,x,xdot)and error flag- ires.- ires = 0if- ressucceeds to compute- r,- =-1if residue is locally not defined for- (t,x,xdot),- =-2if parameters are out of admissible range.
- a list
- This form of external is used to pass parameters to the function. It must be as follows: - list(res,p1,p2,...) - where the calling sequence of the function - resis now- r=res(t,y,ydot,p1,p2,...) - resstill returns the residual value as a function of- (t,x,xdot,x1,x2,...), and p1,p2,... are function parameters.
- a character string
- it must refer to the name of a C or fortran routine. Assuming that <r_name> is the given name. - The Fortran calling sequence must be- <r_name>(t,x,xdot,res,ires,rpar,ipar)- double precision t,x(*),xdot(*),res(*),rpar(*)- integer ires,ipar(*)
- The C calling sequence must be - C2F(<r_name>)(double *t, double *x, double *xdot, double *res, integer *ires, double *rpar, integer *ipar) 
 - where - tis the current time value
- xthe state array
- xdotthe array of state derivatives
- res the array of residuals 
- iresthe execution indicator
- rparis the array of floating point parameter values, needed but cannot be set by the- daefunction
- iparis the array of floating integer parameter values, needed but cannot be set by the- daefunction
 
 
- jac
- an external. Computes the value of - dg/dx+cj*dg/dxdotfor a given value of parameter- cj. It may be- a Scilab function
- Its calling sequence must be - r=jac(t,x,xdot,cj)and the- jacfunction must return- r=dg(t,x,xdot)/dy+cj*dg(t,x,xdot)/dxdotwhere- cjis a real scalar
- a list
- This form of external is used to pass parameters to the function. It must be as follows: - list(jac,p1,p2,...) - where the calling sequence of the function - jacis now- r=jac(t,x,xdot,p1,p2,...) - jacstill returns- dg/dx+cj*dg/dxdotas a function of- (t,x,xdot,cj,p1,p2,...).
- a character string
- it must refer to the name of a C or fortran routine. Assuming that <j_name> is the given name, - The Fortran calling sequence must be- <j_name>(t, x, xdot, r, cj, ires, rpar, ipar)- double precision t, x(*), xdot(*), r(*), ci, rpar(*)- integer ires, ipar(*)
- The C calling sequence must be - C2F(<j_name>)(double *t, double *x, double *xdot, double *r, double *cj, - integer *ires, double *rpar, integer *ipar) 
 - where - t, x, xdot, ires, rpar, ipar have similar definition as above, r is the results array
 
- surface
- an external. Computes the value of the column vector - surface(t,x)with- ngcomponents. Each component defines a surface.- a Scilab function
- Its calling sequence must be - r=surface(t,x), this function must return a vector with- ngelements.
- a list
- This form of external is used to pass parameters to the function. It must be as follows: - list(surface,p1,p2,...) - where the calling sequence of the function - surfaceis now- r=surface(t,x,p1,p2,...) 
- character string
- it must refer to the name of a C or fortran routine. Assuming that <s_name> is the given name, - The Fortran calling sequence must be- <r_name>(nx, t, x, ng, r, rpar, ipar)- double precision t, x(*), r(*), rpar(*)- integer nx, ng,ipar(*)
- The C calling sequence must be - C2F(<r_name>)(double *t, double *x, double *xdot, double *r, double *cj, - integer *ires, double *rpar, integer *ipar) 
 - where - t, x, rpar, ipar have similar definition as above,- ngis the number of surfaces,- nxthe dimension of the state and r is the results array.
 
- rd
- a vector with two entries - [times num]- timesis the value of the time at which the surface is crossed,- numis the number of the crossed surface
- hd
- a real vector, an an output it stores the - daecontext. It can be used as an input argument to resume integration (hot restart).
- y
- real matrix . If - %DAEOPTIONS(2)=1, each column is the vector- [t;x(t);xdot(t)]where- tis time index for which the solution had been computed. Else- yis the vector- [x(t);xdot(t)].
Description
The dae function is a gateway built above the
    dassl and dasrt
    function designed for implicit differential equations integration.
g(t,x,xdot)=0 x(t0)=x0 and xdot(t0)=xdot0
If xdot0 is not given in theinitial argument, the dae function tries to compute it solving
    g(t,x0,xdot0)=0,
if xdot0 is given in theinitial argumente it may be either a compatible derivative
    satisfying g(t,x0,xdot0)=0 or an approximate value . In the latter case
    %DAEOPTIONS(7) must be set to
    1.
Detailed examples using Scilab and C coded externals are given in
    modules/differential_equations/tests/unit_tests/dassldasrt.tst
Examples
//Example with Scilab code function [r, ires]=chemres(t, y, yd) r(1) = -0.04*y(1) + 1d4*y(2)*y(3) - yd(1); r(2) = 0.04*y(1) - 1d4*y(2)*y(3) - 3d7*y(2)*y(2) - yd(2); r(3) = y(1) + y(2) + y(3)-1; ires = 0; endfunction function pd=chemjac(x, y, yd, cj) pd=[-0.04-cj , 1d4*y(3) , 1d4*y(2); 0.04 ,-1d4*y(3)-2*3d7*y(2)-cj ,-1d4*y(2); 1 , 1 , 1 ] endfunction x0=[1; 0; 0]; xd0=[-0.04; 0.04; 0]; t=[1.d-5:0.02:.4, 0.41:.1:4, 40, 400, 4000, 40000, 4d5, 4d6, 4d7, 4d8, 4d9, 4d10]; y=dae([x0,xd0],0,t,chemres);// returns requested observation time points %DAEOPTIONS=list([],1,[],[],[],0,0); // ask dae mesh points to be returned y=dae([x0,xd0],0,4d10,chemres); // without jacobian y=dae([x0,xd0],0,4d10,chemres,chemjac); // with jacobian //example with C code (c compiler needed) -------------------------------------------------- //-1- create the C codes in TMPDIR - Vanderpol equation, implicit form code=['#include <math.h>' 'void res22(double *t,double *y,double *yd,double *res,int *ires,double *rpar,int *ipar)' '{res[0] = yd[0] - y[1];' ' res[1] = yd[1] - (100.0*(1.0 - y[0]*y[0])*y[1] - y[0]);}' ' ' 'void jac22(double *t,double *y,double *yd,double *pd,double *cj,double *rpar,int *ipar)' '{pd[0]=*cj - 0.0;' ' pd[1]= - (-200.0*y[0]*y[1] - 1.0);' ' pd[2]= - 1.0;' ' pd[3]=*cj - (100.0*(1.0 - y[0]*y[0]));}' ' ' 'void gr22(int *neq, double *t, double *y, int *ng, double *groot, double *rpar, int *ipar)' '{ groot[0] = y[0];}'] mputl(code,TMPDIR+'/t22.c') //-2- compile and load them ilib_for_link(['res22' 'jac22' 'gr22'],'t22.c',[],'c',TMPDIR+'/Makefile',TMPDIR+'/t22loader.sce'); exec(TMPDIR+'/t22loader.sce') //-3- run rtol=[1.d-6;1.d-6];atol=[1.d-6;1.d-4]; t0=0;y0=[2;0];y0d=[0;-2];t=[20:20:200];ng=1; //simple simulation t=0:0.003:300; yy=dae([y0,y0d],t0,t,atol,rtol,'res22','jac22'); clf();plot(yy(1,:),yy(2,:)) //find first point where yy(1)=0 [yy,nn,hotd]=dae("root",[y0,y0d],t0,300,atol,rtol,'res22','jac22',ng,'gr22'); plot(yy(1,1),yy(2,1),'r+') xstring(yy(1,1)+0.1,yy(2,1),string(nn(1))) //hot restart for next point t01=nn(1);[pp,qq]=size(yy);y01=yy(2:3,qq);y0d1=yy(3:4,qq); [yy,nn,hotd]=dae("root",[y01,y0d1],t01,300,atol,rtol,'res22','jac22',ng,'gr22',hotd); plot(yy(1,1),yy(2,1),'r+') xstring(yy(1,1)+0.1,yy(2,1),string(nn(1)))
See Also
| << bvode | Equations Differentielles | daeoptions >> |