Scilab-Branch-5.3-GIT
      
      - Scilab help
 - CACSD
 - abcd
 - abinv
 - arhnk
 - arl2
 - arma
 - arma2p
 - armac
 - armax
 - armax1
 - arsimul
 - augment
 - balreal
 - bilin
 - black
 - bode
 - bstap
 - cainv
 - calfrq
 - canon
 - ccontrg
 - chart
 - cls2dls
 - colinout
 - colregul
 - cont_frm
 - cont_mat
 - contr
 - contrss
 - copfac
 - csim
 - ctr_gram
 - dbphi
 - dcf
 - ddp
 - des2ss
 - des2tf
 - dhinf
 - dhnorm
 - dscr
 - dsimul
 - dt_ility
 - dtsi
 - equil
 - equil1
 - evans
 - feedback
 - findABCD
 - findAC
 - findBD
 - findBDK
 - findR
 - findx0BD
 - flts
 - fourplan
 - frep2tf
 - freq
 - freson
 - fspecg
 - fstabst
 - g_margin
 - gainplot
 - gamitg
 - gcare
 - gfare
 - gfrancis
 - gtild
 - h2norm
 - h_cl
 - h_inf
 - h_inf_st
 - h_norm
 - hallchart
 - hankelsv
 - hinf
 - imrep2ss
 - inistate
 - invsyslin
 - kpure
 - krac2
 - lcf
 - leqr
 - lft
 - lin
 - linf
 - linfn
 - linmeq
 - lqe
 - lqg
 - lqg2stan
 - lqg_ltr
 - lqr
 - ltitr
 - m_circle
 - macglov
 - markp2ss
 - minreal
 - minss
 - mucomp
 - narsimul
 - nehari
 - nicholschart
 - noisegen
 - nyquist
 - nyquistfrequencybounds
 - obs_gram
 - obscont
 - observer
 - obsv_mat
 - obsvss
 - p_margin
 - parrot
 - pfss
 - phasemag
 - ppol
 - prbs_a
 - projsl
 - reglin
 - repfreq
 - ric_desc
 - ricc
 - riccati
 - routh_t
 - rowinout
 - rowregul
 - rtitr
 - sensi
 - sgrid
 - show_margins
 - sident
 - sm2des
 - sm2ss
 - sorder
 - specfact
 - ss2des
 - ss2ss
 - ss2tf
 - st_ility
 - stabil
 - svplot
 - sysfact
 - syssize
 - tf2des
 - tf2ss
 - time_id
 - trzeros
 - ui_observer
 - unobs
 - zeropen
 - zgrid
 
Please note that the recommended version of Scilab is 2026.0.0. This page might be outdated.
See the recommended documentation of this function
nehari
Nehari approximant
Calling Sequence
[x]=nehari(R [,tol])
Arguments
- R
 linear system (
syslinlist)- x
 linear system (
syslinlist)- tol
 optional threshold
Description
[x]=nehari(R [,tol])returns the Nehari approximant of R.
R = linear system in state-space representation (syslin list).
R is strictly proper and - R~ is stable 
    (i.e. R is anti stable).
|| R - X ||oo = min || R - Y ||oo Y in Hoo
| << narsimul | CACSD | nicholschart >> |