- Scilab help
- Statistics
- cdfbet
- cdfbin
- cdfchi
- cdfchn
- cdff
- cdffnc
- cdfgam
- cdfnbn
- cdfnor
- cdfpoi
- cdft
- center
- wcenter
- cmoment
- correl
- covar
- ftest
- ftuneq
- geomean
- harmean
- iqr
- mad
- mean
- meanf
- median
- moment
- msd
- mvvacov
- nancumsum
- nand2mean
- nanmax
- nanmean
- nanmeanf
- nanmedian
- nanmin
- nanstdev
- nansum
- nfreq
- pca
- perctl
- princomp
- quart
- regress
- sample
- samplef
- samwr
- show_pca
- st_deviation
- stdevf
- strange
- tabul
- thrownan
- trimmean
- variance
- variancef
Please note that the recommended version of Scilab is 2026.0.0. This page might be outdated.
However, this page did not exist in the previous stable version.
msd
mean squared deviation
Calling Sequence
y=msd(x) y=msd(x,'r') or m=msd(x,1) y=msd(x,'c') or m=msd(x,2)
Arguments
- x
- real or complex vector or matrix 
Description
This function computes the  mean squared deviation of  the values of a
    vector or matrix x.
For  a vector or a matrix  x, y=msd(x) returns in the
    scalar y the mean squared deviation of all the entries of x.
y=msd(x,'r')   (or, equivalently, y=msd(x,1))  is the
    rowwise mean squared  deviation. It returns  in each entry of the  row
    vector  y the  mean squared deviation  of each column of x.
y=msd(x,'c') (or,  equivalently,  m=msd(x,2)) is the
    columnwise mean squared  deviation.  It returns in  each entry  of the
    column vector y the mean squared deviation of  each row of x.
Examples
x=[0.2113249 0.0002211 0.6653811;0.7560439 0.3303271 0.6283918] m=msd(x) m=msd(x,'r') m=msd(x,'c')
Authors
Carlos Klimann
Bibliography
Wonacott, T.H. & Wonacott, R.J.; Introductory Statistics, fifth edition, J.Wiley & Sons, 1990.
| << moment | Statistics | mvvacov >> |