Scilab 5.3.1
Change language to:
English - Français - Português

Scilab help >> Special Functions > oldbesseli

# oldbessely

### 呼び出し手順

```y = oldbesseli(alpha,x)
y = oldbesseli(alpha,x,ice)
y = oldbesselj(alpha,x)
y = oldbesselk(alpha,x)
y = oldbesselk(alpha,x,ice)
y = oldbessely(alpha,x)```

### パラメータ

x

real vector with non negative entries

alpha

real vector with non negative entries regularly spaced with increment equal to one `alpha=alpha0+(n1:n2)`

ice

integer flag, with default value 1

### 説明

これらの関数は古い関数であり, besseli, besselj, besselk, bessely を代わりに使用してください. しかし,これらの2組の関数の構文は異なっていることに注意してください.

`oldbesseli(alpha,x)` computes modified Bessel functions of the first kind (I sub alpha), for real, non-negative order `alpha` and real non negative argument `x`. `besseli(alpha,x,2)` computes `besseli(alpha,x).*exp(-x)`.

`oldbesselj(alpha,x)` computes Bessel functions of the first kind (J sub alpha), for real, non-negative order `alpha` and real non negative argument `x`.

`oldbesselk(alpha,x)` computes modified Bessel functions of the second kind (K sub alpha), for real, non-negative order `alpha` and real non negative argument `x`. `besselk(alpha,x,2)` computes `besselk(alpha,x).*exp(x)`.

`oldbessely(alpha,x)` computes Bessel functions of the second kind (Y sub alpha), for real, non-negative order `alpha` and real non negative argument `x`.

`alpha` and `x` may be vectors. The output is `m`-by-`n` with ```m = size(x,'*')```, `n = size(alpha,'*')` whose `(i,j)` entry is `oldbessel?(alpha(j),x(i))`.

### Remarks

Y_alpha and J_alpha Bessel functions are 2 independant solutions of the Bessel 's differential equation :

K_alpha and I_alpha modified Bessel functions are 2 independant solutions of the modified Bessel 's differential equation :

### Examples

```// example #1: display some I Bessel functions
x = linspace(0.01,10,5000)';
y = oldbesseli(0:4,x);
ys = oldbesseli(0:4,x,2);
clf()
subplot(2,1,1)
plot2d(x,y, style=2:6, leg="I0@I1@I2@I3@I4", rect=[0,0,6,10])
xtitle("Some modified Bessel functions of the first kind")
subplot(2,1,2)
plot2d(x,ys, style=2:6, leg="I0s@I1s@I2s@I3s@I4s", rect=[0,0,6,1])
xtitle("Some modified scaled Bessel functions of the first kind")

// example #2 : display some J Bessel functions
x = linspace(0,40,5000)';
y = besselj(0:4,x);
clf()
plot2d(x,y, style=2:6, leg="J0@J1@J2@J3@J4")
xtitle("Some Bessel functions of the first kind")

// example #3 : use the fact that J_(1/2)(x) = sqrt(2/(x pi)) sin(x)
//              to compare the algorithm of besselj(0.5,x) with
//              a more direct formula
x = linspace(0.1,40,5000)';
y1 = besselj(0.5, x);
y2 = sqrt(2 ./(%pi*x)).*sin(x);
er = abs((y1-y2)./y2);
ind = find(er > 0 & y2 ~= 0);
clf()
subplot(2,1,1)
plot2d(x,y1,style=2)
xtitle("besselj(0.5,x)")
subplot(2,1,2)
plot2d(x(ind), er(ind), style=2, logflag="nl")
xtitle("relative error between 2 formulae for besselj(0.5,x)")

// example #4: display some K Bessel functions
x = linspace(0.01,10,5000)';
y = besselk(0:4,x);
ys = besselk(0:4,x,1);
clf()
subplot(2,1,1)
plot2d(x,y, style=0:4, leg="K0@K1@K2@K3@K4", rect=[0,0,6,10])
xtitle("Some modified Bessel functions of the second kind")
subplot(2,1,2)
plot2d(x,ys, style=0:4, leg="K0s@K1s@K2s@K3s@K4s", rect=[0,0,6,10])
xtitle("Some modified scaled Bessel functions of the second kind")

// example #5: plot severals Y Bessel functions
x = linspace(0.1,40,5000)'; // Y Bessel functions are unbounded  for x -> 0+
y = bessely(0:4,x);
clf()
plot2d(x,y, style=0:4, leg="Y0@Y1@Y2@Y3@Y4", rect=[0,-1.5,40,0.6])
xtitle("Some Bessel functions of the second kind")```

### Authors

W. J. Cody, L. Stoltz (code from Netlib (specfun))

 << legendre Special Functions Randlib >>