Please note that the recommended version of Scilab is 2026.0.0. This page might be outdated.
See the recommended documentation of this function
int3d
definite 3D integral by quadrature and cubature method
Calling Sequence
[result,err]=int3d(X,Y,Z,f [,nf[,params]])
Arguments
- X
- a 4 by - NUMTETarray containing the abscissae of the vertices of the- NUMTETtetrahedrons.
- Y
- a 4 by - NUMTETarray containing the ordinates of the vertices of the- NUMTETtetrahedrons.
- Z
- a 4 by - NUMTETarray containing the third coordinates of the vertices of the- NUMTETtetrahedrons.
- f
- external (function or list or string) defining the integrand - f(xyz,nf), where- xyzis the vector of a point coordinates and nf the number functions
- nf
- the number of function to integate (default is 1) 
- params
- real vector - [minpts, maxpts, epsabs, epsrel]. default value is- [0, 1000, 0.0, 1.d-5].- epsabs
- Desired bound on the absolute error. 
- epsrel
- Desired bound on the relative error. 
- minpts
- Minimum number of function evaluations. 
- maxpts
- Maximum number of function evaluations. The number of function evaluations over each subregion is 43 
 
- result
- the integral value,or vector of the integral values. 
- err
- Estimates of absolute errors. 
Description
The function calculates an approximation to a given vector of definite integrals
I I I (F ,F ,...,F ) dx(3)dx(2)dx(1), 1 2 numfun
where the region of integration is a collection of NUMTET tetrahedrons and where
F = F (X(1),X(2),X(3)), J = 1,2,...,NUMFUN. J J
A globally adaptive strategy is applied in order to compute
    approximations result(k) hopefully satisfying, for each
    component of I, the following claim for accuracy:
    ABS(I(K)-RESULT(K))<=MAX(EPSABS,EPSREL*ABS(I(K)))
int3d repeatedly subdivides the tetrahedrons with
    greatest estimated errors and estimates the integrals and the errors over
    the new subtetrahedrons until the error request is met or
    MAXPTS function evaluations have been used.
A 43 point integration rule with all evaluation points inside the tetrahedron is applied. The rule has polynomial degree 8.
If the values of the input parameters EPSABS or
    EPSREL are selected great enough, an integration rule
    is applied over each tetrahedron and the results are added up to give the
    approximations RESULT(K). No further subdivision of the
    tetrahedrons will then be applied.
When int3d computes estimates to a vector of
    integrals, all components of the vector are given the same treatment. That
    is, I(Fj) and I(Fk) for
j not equal to k, are
    estimated with the same subdivision of the region of integration. For
    integrals with enough similarity, we may save time by applying
    int3d to all integrands in one call. For integrals that
    varies continuously as functions of some parameter, the estimates produced
    by int3d will also vary continuously when the same
    subdivision is applied to all components. This will generally not be the
    case when the different components are given separate treatment.
On the other hand this feature should be used with caution when the different components of the integrals require clearly different subdivisions.
References
Fortran routine dcutet.f
Examples
X=[0;1;0;0]; Y=[0;0;1;0]; Z=[0;0;0;1]; [RESULT,ERROR]=int3d(X,Y,Z,'int3dex') // computes the integrand exp(x*x+y*y+z*z) over the //tetrahedron (0.,0.,0.),(1.,0.,0.),(0.,1.,0.),(0.,0.,1.) //integration over a cube -1<;=x<=1;-1<=y<=1;-1<=z<=1 // bottom -top- right -left- front -rear- X=[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; -1,-1, -1,-1, 1, 1, -1,-1, -1,-1, -1,-1; 1,-1, 1,-1, 1, 1, -1,-1, 1,-1, 1,-1; 1, 1, 1, 1, 1, 1, -1,-1, 1, 1, 1, 1]; Y=[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; -1,-1, -1,-1, -1, 1, -1, 1, -1,-1, 1, 1; -1, 1, -1, 1, 1, 1, 1, 1, -1,-1, 1, 1; 1, 1, 1, 1, -1,-1, -1,-1, -1,-1, 1, 1]; Z=[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; -1,-1, 1, 1, -1, 1, -1, 1, -1,-1, -1,-1; -1,-1, 1, 1, -1,-1, -1,-1, -1, 1, -1, 1; -1,-1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; function v=f(xyz, numfun),v=exp(xyz'*xyz),endfunction [result,err]=int3d(X,Y,Z,f,1,[0,100000,1.d-5,1.d-7]) function v=f(xyz, numfun),v=1,endfunction [result,err]=int3d(X,Y,Z,f,1,[0,100000,1.d-5,1.d-7])
See Also
Authors
- Jarle Berntsen
- The Computing Centre, University of Bergen, Thormohlens gt. 55, N-5008 Bergen, Norway Phone.. 47-5-544055 Email.. jarle@eik.ii.uib.no, 
- Ronald Cools
- Dept. of Computer Science, Katholieke Universiteit Leuven, Celestijnenlaan 200A, B-3030 Heverlee, Belgium Phone.. 32-16-201015 (3562) Email.. ronald@cs.kuleuven.ac.be, 
- Terje O. Espelid
- Department of Informatics, University of Bergen, Thormohlens gt. 55, N-5008 Bergen, Norway Phone.. 47-5-544180 Email.. terje@eik.ii.uib.no 
| << int2d | Equations Differentielles | intc >> |