- Scilab help
- Statistics
- cdfbet
- cdfbin
- cdfchi
- cdfchn
- cdff
- cdffnc
- cdfgam
- cdfnbn
- cdfnor
- cdfpoi
- cdft
- center
- wcenter
- cmoment
- correl
- covar
- ftest
- ftuneq
- geomean
- harmean
- iqr
- mad
- mean
- meanf
- median
- moment
- msd
- mvvacov
- nancumsum
- nand2mean
- nanmax
- nanmean
- nanmeanf
- nanmedian
- nanmin
- nanstdev
- nansum
- nfreq
- pca
- perctl
- princomp
- quart
- regress
- sample
- samplef
- samwr
- show_pca
- st_deviation
- stdevf
- strange
- tabul
- thrownan
- trimmean
- variance
- variancef
Please note that the recommended version of Scilab is 2024.1.0. This page might be outdated.
However, this page did not exist in the previous stable version.
nanmax
max (ignoring Nan's)
Calling Sequence
[m,index]=nanmax(x) [m,index]=nanmax(x,'r') [m,index]=nanmax(x,'c')
Arguments
- x
real or complex vector or matrix
Description
This function gives for a real or a numerical matrix
x
his largest element m
(but ignoring the
NANs).
For x
, a numerical vector or matrix, m=nanmax(x)
returns in scalar m
the largest
element of x
(ignoring the NANs). The form
[m,index] =nanmax(x,orient)
gives in addition of the
value of the largest element of x
(ignoring the
NANs) in scalar m
, the index of this element in
x
, as a 2-vector.
m=nanmax(x,'r')
gives in the 1xsize(x,2) matrix
m
the largest elements (ignoring the NANs) of
each column of x
. If the form
[m,index]=nanmax(x,'r')
is used, the elements of the
1xsize(x,2) matrix index are the indexes of the largest
elements (ignoring the NANs) of each column of x in the
corresponding column.
m=nanmax(x,'c') gives in the size(x,2)x1 matrix m the largest elements (ignoring the NANs) of each row of x. If the form [m,index]=nanmax(x,'c') is used, the elements of the size(x,2)x1 matrix index are the indexes of the largest elements (ignoring the NANs) of each row of x in the corresponding row.
In Labostat, NAN values stand for missing values in tables.
Examples
x=[0.2113249 %nan 0.6653811;0.7560439 0.3303271 0.6283918] m=nanmax(x) m=nanmax(x,'r') m=nanmax(x,'c')
Authors
Carlos Klimann
Bibliography
Wonacott, T.H. & Wonacott, R.J.; Introductory Statistics, fifth edition, J.Wiley & Sons, 1990.
<< nand2mean | Statistics | nanmean >> |