Scilab Website | Contribute with GitLab | Mailing list archives | ATOMS toolboxes
Scilab Online Help
5.3.1 - English

Change language to:
Français - 日本語 - Português

Please note that the recommended version of Scilab is 2024.1.0. This page might be outdated.
See the recommended documentation of this function

Scilab help >> Optimization and Simulation > NDcost

NDcost

generic external for optim computing gradient using finite differences

Calling Sequence

[f,g,ind]=NDcost(x,ind,fun,varargin)

Arguments

x

real vector or matrix

ind

integer parameter (see optim)

fun

Scilab function with calling sequence F=fun(x,varargin) varargin may be use to pass parameters p1,...pn

f

criterion value at point x (see optim)

g

gradient value at point x (see optim)

Description

This function can be used as an external for optim to minimize problem where gradient is too complicated to be programmed. only the function fun which computes the criterion is required.

This function should be used as follow: [f,xopt,gopt]=optim(list(NDcost,fun,p1,...pn),x0,...)

Examples

// example #1 (a simple one)
//function to minimize
function f=rosenbrock(x, varargin)
  p=varargin(1)
  f=1+sum( p*(x(2:$)-x(1:$-1)^2)^2 + (1-x(2:$))^2)
endfunction

x0=[1;2;3;4];
[f,xopt,gopt]=optim(list(NDcost,rosenbrock,200),x0)

// example #2: This example (by Rainer von Seggern) shows a quick (*) way to
//             identify the parameters of a linear differential equation with 
//             the help of scilab.
//             The model is a simple damped (linear) oscillator:
//
//               x''(t) + c x'(t) + k x(t) = 0 ,
// 
// and we write it as a system of two differential equations of first
// order with y(1) = x, and y(2) = x':
//
//     dy1/dt = y(2)
//     dy2/dt = -c*y(2) -k*y(1).
//
// We suppose to have m measurements of x (that is y(1)) at different times 
// t_obs(1), ..., t_obs(m) called x_obs(1), ..., x_obs(m)  (in this example
// these measuresments will be simulated), and we want to identify the parameters
// c and k by minimizing the sum of squared errors between x_obs and y1(t_obs,p).
// 
// (*) This method is not the most efficient but it is easy to implement.
// 
function dy=DEQ(t, y, p)
  // The rhs of our first order differential equation system.
  c =p(1);k=p(2)
  dy=[y(2);-c*y(2)-k*y(1)]
endfunction

function y=uN(p, t, t0, y0)
  // Numerical solution obtained with ode. (In this linear case an exact analytic
  // solution can easily be found, but ode would also work for "any" system.)
  // Note: the ode output must be an approximation of the solution at
  //       times given in the vector t=[t(1),...,t($)]  
  y = ode(y0,t0,t,list(DEQ,p))
endfunction

function r=cost_func(p, t_obs, x_obs, t0, y0) 
  // This is the function to be minimized, that is the sum of the squared
  // errors between what gives the model and the measuments.
  sol = uN(p, t_obs, t0, y0)
  e = sol(1,:) - x_obs
  r = sum(e.*e) 
endfunction

// Data
y0 = [10;0]; t0 = 0; // Initial conditions y0 for initial time t0. 
T = 30;  // Final time for the measurements.

// Here we simulate experimental data, (from which the parameters
// should be identified).
pe = [0.2;3];  // Exact parameters
m = 80;  t_obs = linspace(t0+2,T,m); // Observation times
// Noise: each measurement is supposed to have a (gaussian) random error
// of mean 0 and std deviation proportional to the magnitude
// of the value (sigma*|x_exact(t_obs(i))|).
sigma = 0.1;  
y_exact = uN(pe, t_obs, t0, y0);
x_obs = y_exact(1,:) + grand(1,m,"nor",0, sigma).*abs(y_exact(1,:));

// Initial guess parameters
p0 = [0.5 ; 5];  

// The value of the cost function before optimization:
cost0 = cost_func(p0, t_obs, x_obs, t0, y0); 
mprintf("\n\r The value of the cost function before optimization = %g \n\r",...

// Solution with optim
[costopt,popt]=optim(list(NDcost,cost_func, t_obs, x_obs, t0, y0),p0,...
                                                       'ar',40,40,1e-3);

mprintf("\n\r The value of the cost function after optimization  = %g",costopt)
mprintf("\n\r The identified values of the parameters: c = %g, k = %g \n\r",...
                                                               popt(1),popt(2))

// A small plot:
t = linspace(0,T,400);
y = uN(popt, t, t0, y0);
clf();
plot2d(t',y(1,:)',style=5)
plot2d(t_obs',x_obs(1,:)',style=-5)
legend(["model","measurements"]);
xtitle("Least square fit to identify ode parameters")

See Also

  • optim — non-linear optimization routine
  • external — Scilab Object, external function or routine
  • derivative — approximate derivatives of a function
<< Optimization simplex Optimization and Simulation aplat >>

Copyright (c) 2022-2024 (Dassault Systèmes)
Copyright (c) 2017-2022 (ESI Group)
Copyright (c) 2011-2017 (Scilab Enterprises)
Copyright (c) 1989-2012 (INRIA)
Copyright (c) 1989-2007 (ENPC)
with contributors
Last updated:
Thu Mar 03 10:59:44 CET 2011