Scilab Website | Contribute with GitLab | Mailing list archives | ATOMS toolboxes
Scilab Online Help
2025.0.0 - Français


rpem

Recursive Prediction-Error Minimization estimation

Syntax

[w1,[v]]=rpem(w0,u0,y0,[lambda,[k,[c]]])

Arguments

w0

list(theta,p,l,phi,psi) where:

theta

[a,b,c] is a real vector of order 3*n

a,b,c

a=[a(1),...,a(n)], b=[b(1),...,b(n)], c=[c(1),...,c(n)]

p

(3*n x 3*n) real matrix.

phi,psi,l

real vector of dimension 3*n

Applicable values for the first call:

theta=phi=psi=l=0*ones(1,3*n). p=eye(3*n,3*n)
u0

real vector of inputs (arbitrary size). (u0($) is not used by rpem)

y0

vector of outputs (same dimension as u0). (y0(1) is not used by rpem).

If the time domain is (t0,t0+k-1) the u0 vector contains the inputs

u(t0),u(t0+1),..,u(t0+k-1) and y0 the outputs

y(t0),y(t0+1),..,y(t0+k-1)

Optional arguments

lambda

optional argument (forgetting constant) chosen close to 1 as convergence occur:

lambda=[lambda0,alfa,beta] evolves according to :

lambda(t)=alfa*lambda(t-1)+beta

with lambda(0)=lambda0

k

contraction factor to be chosen close to 1 as convergence occurs.

k=[k0,mu,nu] evolves according to:

k(t)=mu*k(t-1)+nu

with k(0)=k0.

c

Large argument.(c=1000 is the default value).

Outputs:

w1

Update for w0.

v

sum of squared prediction errors on u0, y0.(optional).

In particular w1(1) is the new estimate of theta. If a new sample u1, y1 is available the update is obtained by:

[w2,[v]]=rpem(w1,u1,y1,[lambda,[k,[c]]]). Arbitrary large series can thus be treated.

Description

Recursive estimation of arguments in an ARMAX model. Uses Ljung-Soderstrom recursive prediction error method. Model considered is the following:

y(t)+a(1)*y(t-1)+...+a(n)*y(t-n)=
b(1)*u(t-1)+...+b(n)*u(t-n)+e(t)+c(1)*e(t-1)+...+c(n)*e(t-n)

The effect of this command is to update the estimation of unknown argument theta=[a,b,c] with

a=[a(1),...,a(n)], b=[b(1),...,b(n)], c=[c(1),...,c(n)].

Example

nbPoints = 50; // Number of points computed

// Real parameters a,b,c: here, y=u
a=cat(2,1,zeros(1,nbPoints - 1));
b=cat(2,1,zeros(1,nbPoints - 1));
c=zeros(1,nbPoints);

// Generate input signal
t=linspace(0,50,600);
w=%pi/3;
u=cos(w*t);

// Generate output signal
Arma=armac(a,b,c,1,1,0);
y=arsimul(Arma,u);

f1=figure("figure_name","figure1","backgroundColor",[1 1 1]);
subplot(3,1,1);
plot(t, u, "b+");
xtitle("Input");
subplot(3,1,2);
plot(t, y);

// Arguments of rpem
phi=zeros(1,nbPoints*3);
psi=zeros(1,nbPoints*3);
l=zeros(1,nbPoints*3);
p=1*eye(nbPoints*3,nbPoints*3);
theta=[0*a 0*b 0*c];
w0=list(theta,p,l,phi,psi);
[w0, v]=rpem(w0,u,y);

// Get estimated parameters:
a_est=w0(1)(1);
b_est=w0(1)(nbPoints + 1);
c_est=w0(1)(2 * nbPoints + 1);
for i=2:nbPoints
    a_est=cat(2,a_est,w0(1)(i));
    b_est=cat(2,b_est,w0(1)(i+nbPoints));
    c_est=cat(2,c_est,w0(1)(i+2*nbPoints));
end

// Generate and plot output estimated
Arma_est=armac(a_est,b_est,c_est,1,1,0);
y_est=arsimul(Arma_est,u);
plot(t, y_est,"color","red");
xtitle("Real output(blue), Estimated output (red)");

// Plot estimated parameters
subplot(3,1,3);
xtitle("a,b,c estimated");
plot(a_est(1,:),"color","red");
plot(b_est(1,:),"color","green");
plot(c_est(1,:),"color","blue");
Report an issue
<< phc Identification Estimation Spectrale >>

Copyright (c) 2022-2024 (Dassault Systèmes)
Copyright (c) 2017-2022 (ESI Group)
Copyright (c) 2011-2017 (Scilab Enterprises)
Copyright (c) 1989-2012 (INRIA)
Copyright (c) 1989-2007 (ENPC)
with contributors
Last updated:
Thu Oct 24 11:15:59 CEST 2024