quaskro
quasi-Kronecker form
Syntax
[Q, Z, Qd, Zd, numbeps, numbeta] = quaskro(F) [Q, Z, Qd, Zd, numbeps, numbeta] = quaskro(E,A) [Q, Z, Qd, Zd, numbeps, numbeta] = quaskro(F,tol) [Q, Z, Qd, Zd, numbeps, numbeta] = quaskro(E,A,tol)
Arguments
- F
- real matrix pencil - F=s*E-A(- s=poly(0,'s'))
- E,A
- two real matrices of same dimensions 
- tol
- a real number (tolerance, default value=1.d-10) 
- Q,Z
- two square orthogonal matrices 
- Qd,Zd
- two vectors of integers 
- numbeps
- vector of integers 
Description
Quasi-Kronecker form of matrix pencil: quaskro computes two
            orthogonal matrices Q, Z which put the pencil F=s*E -A into
            upper-triangular form:
           | sE(eps)-A(eps) |        X       |      X     |
           |----------------|----------------|------------|
           |        O       | sE(inf)-A(inf) |      X     |
Q(sE-A)Z = |=================================|============|
           |                                 |            |
           |                O                | sE(r)-A(r) |
 The dimensions of the blocks are given by:
eps=Qd(1) x Zd(1), inf=Qd(2) x Zd(2),
            r = Qd(3) x Zd(3)
The inf block contains the infinite modes of
            the pencil.
The f block contains the finite modes of
            the pencil
The structure of epsilon blocks are given by:
numbeps(1) = # of eps blocks of size 0 x 1
numbeps(2) = # of eps blocks of size 1 x 2
numbeps(3) = # of eps blocks of size 2 x 3  etc...
The complete (four blocks) Kronecker form is given by
            the function kroneck which calls quaskro on
            the (pertransposed) pencil sE(r)-A(r).
The code is taken from T. Beelen
See also
| Report an issue | ||
| << penlaur | pencil | randpencil >> |