Scilab Website | Contribute with GitLab | Mailing list archives | ATOMS toolboxes
Scilab Online Help
2024.0.0 - Русский


lattp

Identification of MA part of a vector ARMA process

Syntax

[la,lb]=lattp(n,p,cov)

Arguments

n

maximum order of the filter

p

fixed dimension of the MA part. If p= -1, the algorithm reduces to the classical Levinson recursions.

cov

matrix containing the Rk's (d*d matrices for a d-dimensional process).It must be given the following way

\begin{eqnarray}
                            \begin{pmatrix}
                            R_0\\R_1\\R_2\\ \vdots \\R_{nlags}
                            \end{pmatrix}
                            \end{eqnarray}

la

list-type variable, giving the successively calculated polynomials (degree 1 to degree p),with coefficients Ak

Description

This function identifies the MA part of a vector ARMA(n,p) process.

Example

//Generate the process
t1=0:0.1:100;
y1=sin(2*%pi*t1)+sin(2*%pi*2*t1);
y1=y1+rand(y1,"normal");

//Covariance of y1
nlag=128;
c1=corr(y1,nlag);
c1=c1';

//Compute the filter with maximum order=15 and p=5
n=5; p=2;
[la1,sig1]=lattp(n,p,c1);

See also

  • levin — Toeplitz system solver by Levinson algorithm (multidimensional)
  • lattn — recursive solution of normal equations
Report an issue
<< lattn Identification mrfit >>

Copyright (c) 2022-2024 (Dassault Systèmes)
Copyright (c) 2017-2022 (ESI Group)
Copyright (c) 2011-2017 (Scilab Enterprises)
Copyright (c) 1989-2012 (INRIA)
Copyright (c) 1989-2007 (ENPC)
with contributors
Last updated:
Tue Oct 24 14:37:07 CEST 2023