glever
inverse of matrix pencil
Syntax
[Bfs,Bis,chis]=glever(E,A [,s])
Arguments
- E, A
two real square matrices of same dimensions
- s
character string (default value '
s')- Bfs,Bis
two polynomial matrices
- chis
polynomial
Description
Computation of
(s*E-A)^-1
by generalized Leverrier's algorithm for a matrix pencil.
(s*E-A)^-1 = (Bfs/chis) - Bis.
chis = characteristic polynomial (up to a multiplicative constant).
Bfs = numerator polynomial matrix.
Bis
= polynomial matrix ( - expansion of (s*E-A)^-1 at infinity).
Note the - sign before Bis.
Caution
This function uses cleanp to simplify Bfs,Bis and chis.
Examples
s=%s;F=[-1,s,0,0;0,-1,0,0;0,0,s-2,0;0,0,0,s-1]; [Bfs,Bis,chis]=glever(F) inv(F)-((Bfs/chis) - Bis)
See also
| Report an issue | ||
| << fstair | pencil | kroneck >> |