ellipj
Jacobi elliptic functions
Syntax
sn = ellipj(x, m) [sn, cn] = ellipj(x, m) [sn, cn, dn] = ellipj(x, m) struc = ellipj(funames, x, m)
Arguments
- x
- Array of real or complex numbers inside the fundamental rectangle defined by the elliptic integral.
- m
- Scalar decimal number in
[0,1]
: Parameter of the elliptic integral. - sn, cn, dn
- Arrays of real or complex numbers, of the size of
x
: the x-element-wise values of the sn, cn and dn Jacobi elliptic functions. - funames
- vector of case-sensitive keywords among
"cn", "dn", "sn", "nc", "nd", "ns"
: Name(s) of Jacobi elliptic functions whose values must be computed and returned. - struc
- Structure with fields named with the elements of
funames
.
Description
If x
is real, sn = ellipj(x, m)
computes sn
such that
Then, if 0 ≤ x ≤ xM
where
xM
is the position of the first
sn
maximum,
we have x==delip(sn, sqrt(m))
;
if -xM ≤ x ≤ 0
,
we get x==-delip(-sn, sqrt(m))
.
[sn,cn] = ellipj(x,m)
and [sn,cn,dn] = ellipj(x,m)
additionally compute cn = cos(am)
and
dn=(1-m.sn2)1/2
,
where am
is the Jacobi elliptic amplitude function as computed with
amell()
.
st = ellipj("dn", x, m)
computes values of the dn
Jacobi elliptic function for given x
values, and returns them in the
st.dn
field.
Three other nc, nd, ns
Jacobi
elliptic functions can be computed and returned with this syntax, as
nc = 1/cn
, nd = 1/dn
, and ns = 1/sn
.
To compute values of all available Jacobi elliptic functions, we may use
st = ellipj(["cn" "nc" "dn" "nd" "sn" "ns"], x, m)
.
Remark : for complex input numbers x
,
amell()
is used to compute the elliptic amplitude separately of
the real and imaginary parts of x
. Then, addition formulae are used
to compute the complex sn
, cn
etc
[Tee, 1997].
The relative numerical accuracy on sn roughly goes as
|
Examples
With some real input numbers:
--> sn = ellipj(0:0.5:2, 0.4) sn = 0. 0.4724822 0.8109471 0.9767495 0.9850902 --> delip(sn, sqrt(0.4)) ans = 0. 0.5 1. 1.5 1.5550387 --> [sn, cn, dn] = ellipj(-1:0.5:1.5, 0.4) sn = -0.8109471 -0.4724822 0. 0.4724822 0.8109471 0.9767495 cn = 0.5851194 0.8813402 1. 0.8813402 0.5851194 0.2143837 dn = 0.8584555 0.9543082 1. 0.9543082 0.8584555 0.786374
// Input data x = linspace(-6,6,300)'; m = [0.2 0.4 0.6 0.8 0.9]; f = ["sn" "dn" "cn" "nd"]; // Computation st = struct(); for i = 1:length(m) st(i) = ellipj(f,x,m(i)); end // Plot clf for i = 1:size(f,"*") subplot(2,2,i) y = matrix(list2vec(st(f(i))), -1, length(m)); plot2d(x, y,[1 14 28 18 6]) title(f(i), "fontsize",4) xgrid(color("grey75"),1,7) end legend(gca(), msprintf("m =%4.1f\n",m'),1, %f); lg = gce(); lg.legend_location = "by_coordinates"; lg.position = [-0.095 -0.08];
With some complex input numbers:
x = linspace(-6,6,300)'; m = 0.1:0.1:0.9; sn = []; for i = 1:length(m) sn(:,i) = ellipj(x+1.4*%i, m(i)); end clf plot2d(imag(sn), real(sn)) title("sn(-6:6 + 1.4i)", "fontsize",4) xlabel("imag(sn)", "fontsize",2); ylabel("real(sn)", "fontsize",2); colordef(gcf(),"none") gca().data_bounds(1:2) = [-5 5]; gca().tight_limits(1) = "on"; isoview legend(gca(), msprintf("m =%4.1f\n",m'),"out_upper_right");
See also
- amell — função "am" de Jacobi
- delip — Integral elíptica
- %k — Jacobi's complete elliptic integral of the first kind (vectorized)
- Tee, Garry J.: Continuous branches of inverses of the 12 Jacobi elliptic functions for real argument”. 1997
History
Version | Description |
6.1.0 | ellipj() introduced. |
Report an issue | ||
<< dlgamma | Funções Especiais | erf >> |