intl
Cauchy integral
Syntax
y = intl(a, b, z0, r, f)
Arguments
- z0
a complex number
- a, b
two real numbers
- r
positive real number
- f
"external" function
Description
If f is a complex-valued function,
intl(a,b,z0,r,f) computes the integral of
f(z)dz along the curve in the complex plane defined by
z0 + r.*exp(%i*t) for a<=t<=b
.(part of the circle with center z0 and radius
r with phase between a and
b).
Examples
function y=f(z) y = z^(3 + %pi * %i) endfunction intl(1, 2, 1+%i, 3, f)
See also
- intc — intégrale dans le plan complexe, selon un chemin rectiligne
| Report an issue | ||
| << intg | Intégration - dérivation | intsplin >> |