Please note that the recommended version of Scilab is 2025.0.0. This page might be outdated.
See the recommended documentation of this function
optim_ga
A flexible genetic algorithm
Syntax
[pop_opt,fobj_pop_opt,pop_init,fobj_pop_init] = optim_ga(ga_f,pop_size,nb_generation,p_mut,p_cross,Log,param)
Arguments
- ga_f
the function to be optimized. The prototype if y = f(x) or y = list(f,p1,p2,...).
- pop_size
the size of the population of individuals (default value: 100).
- nb_generation
the number of generations (equivalent to the number of iterations in classical optimization) to be computed (default value: 10).
- p_mut
the mutation probability (default value: 0.1).
- p_cross
the crossover probability (default value: 0.7).
- Log
if %T, will call the output function at the end of each iteration, see
"output_func"
underparam
variable below.- param
a list of parameters.
"codage_func": the function which will perform the coding and decoding of individuals (default function: coding_ga_identity).
"init_func": the function which will perform the initialization of the population (default function: init_ga_default).
"dimension", "minbounds" and "maxbounds": parameters used by the initialization function to define the initial population.
"crossover_func": the function which will perform the crossover between two individuals (default function: crossover_ga_default).
"mutation_func": the function which will perform the mutation of one individual (default function: mutation_ga_default).
"selection_func": the function which will perform the selection of individuals at the end of a generation (default function: selection_ga_elitist).
"nb_couples": the number of couples which will be selected so as to perform the crossover and mutation (default value: 100).
"pressure": the value of the efficiency of the worst individual (default value: 0.05).
"output_func": a callback function called after each generation if
Log
is %T (default function output_ga_default).
- pop_opt
the population of optimal individuals.
- fobj_pop_opt
the set of objective function values associated to pop_opt (optional).
- pop_init
the initial population of individuals (optional).
- fobj_pop_init
the set of objective function values associated to pop_init (optional).
Description
This function implements the classical genetic algorithm.
A great flexibility is authorized in customizing the behaviour of the
optim_ga
function.
This flexibility is provided by the various functions which
can be set in the param
variable.
The header of these functions (i.e.
the input and output arguments), can be checked through the help page
corresponding to the default function.
For example, in order to understand what are the input and output arguments of the
"codage_func"
function, please refer to the help page of the coding_identity function.
See the Demonstrations for more examples for this function.
Examples
The following session presents the simplest possible example.
We minimize a quadratic function in dimension 3.
By default, all the parameters are taken in the interval
[0,1]^3.
The "dimension" field is passed to the function which computes the
initial population, which is init_ga_default
function by default.
In the case where the "dimension" field is not customized,
the default value is used, which is equal to 2.
function y=f(x) y = sum(x.^2) endfunction PopSize = 100; Proba_cross = 0.7; Proba_mut = 0.1; NbGen = 10; Log = %T; ga_params = init_param(); // Parameters to control the initial population. ga_params = add_param(ga_params,"dimension",3); [pop_opt, fobj_pop_opt] = .. optim_ga(f, PopSize, NbGen, Proba_mut, Proba_cross, Log, ga_params);
Once the algorithm done, we can analyze the results. In the following script, we compute some basic statistics about the optimum population and get the best and the worst points.
// Display basic statistics // min, mean and max function values of the population. disp([min(fobj_pop_opt) mean(fobj_pop_opt) max(fobj_pop_opt)]) // Get the best x (i.e. the one which achieves the minimum function value) [fmin ,k] = min(fobj_pop_opt) xmin = pop_opt(k) // Get the worst x [fmax ,k] = max(fobj_pop_opt) xmax = pop_opt(k)
In the following example, we customize all the options in order to show all the features of the algorithm.
// Objective function function y=f(x) y = sum(x.^2) endfunction // Output function with a stop criterion function stop=output_ga_custom(gen_index, nb_generation, Pop, FObj_Pop, param) [threshold, err] = get_param(param, "threshold", 1E-10); // default value for the threshold printf(_("%s: iteration %d / %d \n"), "optim_ga", gen_index, nb_generation); printf(_(" min / max value found = %.4E / %.4E\n"), min(FObj_Pop), max(FObj_Pop)); stop = %f if abs(max(FObj_Pop) - min(FObj_Pop)) < threshold then printf(_(" Stop criterion reached: Delta Max to Min under threshold")); stop = %t end endfunction PopSize = 100; Proba_cross = 0.7; Proba_mut = 0.1; NbGen = 20; NbCouples = 110; Log = %T; pressure = 0.05; ga_params = init_param(); // Parameters to adapt to the shape of the optimization problem ga_params = add_param(ga_params,"minbound",[-2; -2]); ga_params = add_param(ga_params,"maxbound",[2; 2]); ga_params = add_param(ga_params,"dimension",2); ga_params = add_param(ga_params,"beta",0); ga_params = add_param(ga_params,"delta",0.1); // Parameters to fine tune the Genetic algorithm. // All these parameters are optional for continuous optimization // If you need to adapt the GA to a special problem, you ga_params = add_param(ga_params,"init_func",init_ga_default); ga_params = add_param(ga_params,"crossover_func",crossover_ga_default); ga_params = add_param(ga_params,"mutation_func",mutation_ga_default); ga_params = add_param(ga_params,"codage_func",coding_ga_identity); ga_params = add_param(ga_params,"selection_func",selection_ga_elitist); //ga_params = add_param(ga_params,"selection_func",selection_ga_random); ga_params = add_param(ga_params,"nb_couples",NbCouples); ga_params = add_param(ga_params,"pressure",pressure); // Customized output function with a stop criterion added ga_params = add_param(ga_params, "threshold", 1E-6); // User defined parameter for the output function ga_params = add_param(ga_params, "output_func", output_ga_custom); [pop_opt, fobj_pop_opt, pop_init, fobj_pop_init] = .. optim_ga(f, PopSize, NbGen, Proba_mut, Proba_cross, Log, ga_params);
Customizing the initial population
In the following example, we customize the init function,
which computes the initial population.
In the myinitga
function, we use the grand function
(instead of the default rand used in
init_ga_default).
We could use any other type of population generator, including,
for example, a low discrepancy sequence such as the Halton or Sobol
sequence.
function y=f(x) y = sum(x.^2) endfunction function Pop_init=myinitga(popsize, param) // This message is to be displayed in the console // for demonstration purpose only : // remove it in a real application! disp("Initializing the Population with grand") // We deal with some parameters to take into account // the boundary of the domain and the neighborhood size [Dim,err] = get_param(param,"dimension",2) [MinBounds,err] = get_param(param,"minbound",-2*ones(1,Dim)) [MaxBounds,err] = get_param(param,"maxbound",2*ones(1,Dim)) // Pop_init must be a list() Pop_init = list() nr = size(MaxBounds,1) nc = size(MaxBounds,2) for i=1:popsize u = grand(nr,nc,"def") Pop_init(i) = (MaxBounds - MinBounds).*u + MinBounds end endfunction PopSize = 100; Proba_cross = 0.7; Proba_mut = 0.1; NbGen = 10; NbCouples = 110; Log = %T; ga_params = init_param(); // Parameters to adapt to the shape of the optimization problem ga_params = add_param(ga_params,"minbound",[-2; -2]); ga_params = add_param(ga_params,"maxbound",[2; 2]); ga_params = add_param(ga_params,"dimension",2); ga_params = add_param(ga_params,"init_func",myinitga); [pop_opt, fobj_pop_opt, pop_init, fobj_pop_init] = .. optim_ga(f, PopSize, NbGen, Proba_mut, Proba_cross, Log, ga_params);
Extra parameters for the function
In some cases, the objective function needs additional parameters
in order to be evaluated.
In this case, we can pass a list to the optim_ga
function, where the first element of the list is the function and the
remaining elements are the extra parameters.
This is done in the following script, where the function f
needs the two extra parameters a1
and a2
.
This is why we define the list myobjfun
and
pass it to the optim_ga
solver.
function y=f(x, a1, a2) y = a1*sum(x.^2) + a2 endfunction PopSize = 100; Proba_cross = 0.7; Proba_mut = 0.1; NbGen = 10; NbCouples = 110; Log = %T; ga_params = init_param(); // Parameters to control the initial population. ga_params = add_param(ga_params,"dimension",3); // Pass the extra parameters to the objective function a1 = 12; a2 = 7; myobjfun = list(f,a1,a2); // Optimize ! [pop_opt, fobj_pop_opt] = .. optim_ga(myobjfun, PopSize, NbGen, Proba_mut, Proba_cross, Log, ga_params);
See also
- optim_moga — multi-objective genetic algorithm
- optim_nsga — A multi-objective Niched Sharing Genetic Algorithm
- optim_nsga2 — A multi-objective Niched Sharing Genetic Algorithm version 2
References
Michalewicz Zbigniew "Genetic Algorithms + Data Structures = Evolution Programs"
Report an issue | ||
<< Algorithms | Algorithms | optim_moga >> |