Scilab Website | Contribute with GitLab | Mailing list archives | ATOMS toolboxes
Scilab Online Help
6.0.0 - English

Change language to:
Français - 日本語 - Português - Русский

Please note that the recommended version of Scilab is 2025.0.0. This page might be outdated.
See the recommended documentation of this function

Scilab Help >> Linear Algebra > Matrix Pencil > quaskro

quaskro

quasi-Kronecker form

Syntax

[Q, Z, Qd, Zd, numbeps, numbeta] = quaskro(F)
[Q, Z, Qd, Zd, numbeps, numbeta] = quaskro(E,A)
[Q, Z, Qd, Zd, numbeps, numbeta] = quaskro(F,tol)
[Q, Z, Qd, Zd, numbeps, numbeta] = quaskro(E,A,tol)

Arguments

F

real matrix pencil F=s*E-A (s=poly(0,'s'))

E,A

two real matrices of same dimensions

tol

a real number (tolerance, default value=1.d-10)

Q,Z

two square orthogonal matrices

Qd,Zd

two vectors of integers

numbeps

vector of integers

Description

Quasi-Kronecker form of matrix pencil: quaskro computes two orthogonal matrices Q, Z which put the pencil F=s*E -A into upper-triangular form:

           | sE(eps)-A(eps) |        X       |      X     |
           |----------------|----------------|------------|
           |        O       | sE(inf)-A(inf) |      X     |
Q(sE-A)Z = |=================================|============|
           |                                 |            |
           |                O                | sE(r)-A(r) |
 

The dimensions of the blocks are given by:

eps=Qd(1) x Zd(1), inf=Qd(2) x Zd(2), r = Qd(3) x Zd(3)

The inf block contains the infinite modes of the pencil.

The f block contains the finite modes of the pencil

The structure of epsilon blocks are given by:

numbeps(1) = # of eps blocks of size 0 x 1

numbeps(2) = # of eps blocks of size 1 x 2

numbeps(3) = # of eps blocks of size 2 x 3 etc...

The complete (four blocks) Kronecker form is given by the function kroneck which calls quaskro on the (pertransposed) pencil sE(r)-A(r).

The code is taken from T. Beelen

See also

  • kroneck — Kronecker form of matrix pencil
  • schur — [ordered] Schur decomposition of matrix and pencils
  • spec — eigenvalues of matrices and pencils
Report an issue
<< penlaur Matrix Pencil randpencil >>

Copyright (c) 2022-2024 (Dassault Systèmes)
Copyright (c) 2017-2022 (ESI Group)
Copyright (c) 2011-2017 (Scilab Enterprises)
Copyright (c) 1989-2012 (INRIA)
Copyright (c) 1989-2007 (ENPC)
with contributors
Last updated:
Tue Feb 14 15:02:43 CET 2017