Scilab Website | Contribute with GitLab | Mailing list archives | ATOMS toolboxes
Scilab Online Help
5.5.2 - English

Change language to:
Français - 日本語 - Português - Русский

Please note that the recommended version of Scilab is 2025.0.0. This page might be outdated.
See the recommended documentation of this function

Scilab Help >> Signal Processing > filters > srfaur

srfaur

square-root algorithm

Calling Sequence

[p,s,t,l,rt,tt]=srfaur(h,f,g,r0,n,p,s,t,l)

Arguments

h, f, g

convenient matrices of the state-space model.

r0

E(yk*yk').

n

number of iterations.

p

estimate of the solution after n iterations.

s, t, l

intermediate matrices for successive iterations;

rt, tt

gain matrices of the filter model after n iterations.

p, s, t, l

may be given as input if more than one recursion is desired (evaluation of intermediate values of p).

Description

square-root algorithm for the algebraic Riccati equation.

Examples

//GENERATE SIGNAL
x=%pi/10:%pi/10:102.4*%pi;
rand('seed',0);rand('normal');
y=[1;1]*sin(x)+[sin(2*x);sin(1.9*x)]+rand(2,1024);

//COMPUTE CORRELATIONS
c=[];for j=1:2,for k=1:2,c=[c;corr(y(k,:),y(j,:),64)];end;end
c=matrix(c,2,128);

//FINDING H,F,G with 6 states
hk=hank(20,20,c);
[H,F,G]=phc(hk,2,6);

//SOLVING RICCATI EQN
r0=c(1:2,1:2);
[P,s,t,l,Rt,Tt]=srfaur(H,F,G,r0,200);

//Make covariance matrix exactly symmetric
Rt=(Rt+Rt')/2

See Also

  • phc — Markovian representation
  • faurre — filter computation by simple Faurre algorithm
  • lindquist — Lindquist's algorithm
Report an issue
<< remezb filters srkf >>

Copyright (c) 2022-2024 (Dassault Systèmes)
Copyright (c) 2017-2022 (ESI Group)
Copyright (c) 2011-2017 (Scilab Enterprises)
Copyright (c) 1989-2012 (INRIA)
Copyright (c) 1989-2007 (ENPC)
with contributors
Last updated:
Wed Apr 01 10:13:54 CEST 2015